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Abstract: Heart rate variability (HRV) is a parameter to measure fluctuations in the inter-
val between heartbeats. HRV provides essential insights into the cardiovascular function
and autonomic nervous system. Electrocardiograms (ECG) on wearable devices are often
recorded at low sampling rates, limiting temporal resolution and information. Resampling
is a technique of changing the sampling rate from a high sampling rate to a lower sampling
rate and vice versa. This research aims to evaluate the effect of resampling ECG data with
a low sampling rate on HRV features. ECG data consists of 50 Hz and 100 Hz sampling
rates. Data with a 50 Hz sampling rate is up-sampled up to 100 Hz, while 100 Hz data is
down-sampled up to 50 Hz and up-sampled up to 250 Hz using the Fast Fourier Transform
Interpolation Method. Upsampling from 50 Hz to 100 Hz shows unsatisfactory results,
except for some HRV features such as NN20, pNN20, and CVI. Better results were found
when up sampling from 100 Hz up to 250 Hz, with some HRV features showing good
concordance values. However, downsampling from 100 Hz up to 50 Hz is unsuitable for
HRV feature analysis. To obtain accurate HRV analysis results in all domains, it is highly
recommended to use a sampling rate above 100 Hz.

Keywords: electrocardiogram, heart rate variability, interpolation, resampling, sampling
rate

1 Introduction

An electrocardiogram (ECG) is a vital tool in the medical world that is used to record the
heart’s electrical activity. ECG represents electrical signals produced by contraction and
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relaxation of the heart muscle. Processing ECG data has many clinical features that can be
extracted, including heart rate variability (HRV). HRV measures fluctuations in the inter-
val between heartbeats in-depth and is an essential indicator in analyzing cardiovascular
function and the condition of the autonomic nervous system [1, 2].

ECG recording is usually carried out using modern equipment that has a high sampling
rate. However, nowadays, ECG recording can be done by using a portable device. These
mobile ECGs often record data with a low sampling rate, due to data storage efficiency
considerations [3, 4]. As a result, ECG data with low sampling rates have limited temporal
resolution and may contain missing information [5]. A low sampling rate in HRV analysis
can affect the extraction of HRV features and the interpretation of analysis results [6].

Resampling is a method used to overcome challenges in ECG data with a low sam-
pling rate. This technique involves changing the data sampling rate through upsampling
or downsampling. Although data resampling has been applied in various signal process-
ing domains [7], the implications of this method for HRV analysis of ECG data with low
sampling rates still need to be clarified.

Previous research was conducted by Kwon et al. [8] and Mahdiani et al. [9]. Both stud-
ies used down-sampling techniques to investigate whether ECG data with high sampling
rates (1,000 Hz and 5 kHz) could be reduced. The down-sampling results are explained by
keeping the information contained in the HRV feature the same. Data with a high sampling
rate can only be obtained from devices with unique technology. Based on this, this research
intends to use ECG data with a low sampling rate that could be obtained with wearable
devices, and then up-sampling is carried out in stages.

The main aim of this study was to investigate the impact of data resampling on HRV
features using ECG data with a low sampling rate. This research will analyze how data re-
sampling affects the extraction results of HRV features and the interpretation of the analysis
results. Through the results of this analysis, we hope that it can provide an understand-
ing of when and how this method can be used effectively in the context of cardiovascular
analysis.

2 Research Methods

This research begins with collecting ECG data, which has 50 Hz and 100 Hz sampling rates
(original ECG data). The initial ECG data (baseline) is then processed for resampling (up-
sampling or down-sampling) using the interpolation method. The following process is to
detect the peak (R-Peak) of the original signal and resampled signal for calculating RR-
Interval. Calculated RR-Interval produces new data (time-series data). The next step is to
extract values of time-series data for the HRV features. Correlation analysis was performed
to determine the significance of the original signal (50 Hz and 100 Hz) with the resampled
signal using the concordance correlation coefficient (CCC) method. Figure 1 shows the
proposed analysis method to compare the original and resampled signal.

2.1 Dataset

Electrocardiogram data in this study uses a secondary dataset from the Physionet site [10].
The lowest sampling rates of ECG data used for HRV analysis are 50 Hz and 100 Hz. The
ECG data consists of 815 data with a 50 Hz sampling rate [11] and 98 data with a 100 Hz
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Figure 1: Proposed method.

sampling rate [12] as a baseline. Data with a 50 Hz sampling rate will be up-sampled into 60
Hz, 70 Hz, 80 Hz, 90 Hz, and 100 Hz. For data with a 100 Hz sampling rate as the baseline,
two resampling processes will be carried out: upsampling up to 250 Hz and downsampling
up to 50 Hz (multiples of 10).

2.2 Fast Fourier Transform Interpolation

The fast fourier transform (FFT) interpolation method for resampling data is an approach
that leverages the frequency-domain concept to alter the data’s sampling rate. The inter-
polation method with FFT works by transforming the original signal into the frequency
domain using FFT, changing the sampling rate by a specific factor, and finally converting
the signal back to the time domain using the inverse FFT (IFFT). The goal is to obtain new
data with a different sampling rate from the original data. Steps of FFT-based interpola-
tion are FFT transformation, adding zero frequencies (zero padding), IFFT, and resampling
result.

2.2.1 FFT transformation

First, perform the FFT transformation of the original data to convert it into the frequency
domain. The general FFT formula is shown in (1).

X(k) =

N−1∑
n=0

x(n) · e−j 2πkn
N (1)

where X(k) is the frequency coefficient in the frequency domain, x(n) is a data point in the
time domain, k is the frequency index, and N is the data length.

2.2.2 Adding zero frequencies (zero padding)

Increasing the sampling rate can be done by adding zero values to the frequency coeffi-
cients in the frequency domain according to the desired frequency enhancement factor.
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2.2.3 Inverse FFT (IFFT)

After adding the necessary zero frequencies, perform the inverse FFT to return the data to
the time domain. The IFFT formula can be seen in (2).

x(n) =
1

N

N−1∑
k=0

X(k) · ej 2πkn
N (2)

where x(n) is the resampled data in the time domain, and X(k) is the altered frequency
coefficient from the original data.

2.2.4 Resampling result

The data obtained after IFFT is the resampled data with the altered frequency as needed.

2.3 Peak Detection and RR-Interval

This research uses two moving averages (TMA) to detect R-peaks in electrocardiogram
(ECG) signals. R-peaks represent the highest points in the QRS complex, indicating the
depolarization of the ventricles. The TMA algorithm leverages the concept of moving av-
erages to identify R-peaks by tracking variations in signal amplitude over time [13]. Here
are the steps for the TMA algorithm for R-peak detection.

2.3.1 Initialization

Define the window lengths for the fast-moving average (FMA) and the slow-moving aver-
age (SMA). The FMA captures short-term changes, while the SMA focuses on longer-term
trends in the ECG signal.

2.3.2 Initial averages

Compute the initial FMA and SMA values using the data points within their respective
windows.

2.3.3 Iterate through data

Start iterating through the ECG signal data points, moving forward step by step (for each
data point).

a. Update FMA: Calculate the FMA value using the current data point and the FMA
window.

b. Update SMA: Calculate the SMA value using the current data point and the SMA
window.

c. Compare Averages: Check if the FMA crosses over the SMA.
d. If FMA crosses over SMA and the difference exceeds threshold, mark the data point

as a potential R-peak.
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2.4 Heart Rate Variability Features

Heart Rate Variability (HRV) refers to the variation in time between successive heartbeats
(RR-Intervals) in an electrocardiogram (ECG) signal. HRV analysis involves quantify-
ing the fluctuations in heart rate over time and exploring the relationship between heart
rate and various physiological and environmental factors. Analysis of HRV is conducted
through two main approaches: linear analysis (time domain and frequency domain) and
nonlinear analysis (Poincaré plot and entropy). Several HRV features provide different
insights into heart rate variability. In this study, we used HRV features as shown in Table 1.

Table 1: Heart rate variability features
Domain Analysis HRV Features Description
Time Domain MeanRR Mean RR-interval

SDRR Standard deviation of RR-intervals
RMSSD Root mean square of successive differences
CVRR Coefficient of variation of RR-intervals, percentage of the

mean RR-interval
NN20 The number of pairs of successive RR-intervals differing

by more than 20 ms
pNN20 The percentage of NN20 divided by the total number of

RR-intervals
Frequency Domain VLF Power in the very low-frequency range (0.0033 - 0.04 Hz)

LF Power in the low-frequency range (0.04 - 0.15 Hz)
HF Power in the high-frequency range (0.15 - 0.4 Hz)
LF/HF Ratio The ratio of LF to HF power
CSI Cardiac sympathetic index
CVI Cardiac vagal index

Poincaré plot SD1 Standard deviation of points perpendicular to the line of
identity in a Poincaré plot

SD2 Standard deviation of points along the line of identity in
a Poincaré plot

SD1/SD2 Ratio The ratio of SD1 to SD2
CVSD Coefficient of variation of SD1

Entropy SampEn Sample Entropy, measure of complexity and irregularity
in HRV

2.5 Concordance Correlation Coefficient (CCC)

Lin’s concordance correlation coefficient (CCC) measures how well the observed bivariate
is valid against standard measurement methods. CCC was used to evaluate the strength
of agreement between the two methods [14]. CCC is the product of the Pearson correlation
coefficient and the squared difference between measurements. A high coefficient means
strong agreement and a linear relationship between methods. The form of the concordance
correlation coefficient is defined in Equation 3.

ρc =
2ρσxσy

σ2
x + σ2

y + (µx − µy)2
(3)
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where µx and µy are the means for the two variables, σ2
x and σ2

y are the corresponding
variances, and ρ is the correlation coefficient between the two variables. CCC (ρc) measures
precision (ρ) and accuracy (Cβ), which has values ranging from 0 to ± 1. Table 2 shows the
interpretation of CCC measurement results [15].

Table 2: CCC Interpretation
Value of CCC Interpretation

> 0.99 Almost Perfect
0.95 to 0.99 Substantial
0.90 to 0.95 Moderate

< 0.90 Poor

3 Result

This section discusses electrocardiogram resampling and correlation coefficients.

Figure 2: ECG signal from 100 Hz baseline resampled up to 250 Hz: Data with initial 1,000
samples (left), adjustment sample size for up sampled data (right).

3.1 Electrocardiogram Resampling

ECG data, which has a baseline 50 Hz sampling rate, is sampled up to 100 Hz (60 Hz, 70
Hz, 80 Hz, 90 Hz, 100 Hz). Meanwhile, ECG data with a 100 Hz baseline is down-sampled
up to 50 Hz and up-sampled up to 250 Hz (using multiples of 10). Each baseline signal is
resampled using the FFT interpolation method. Figure 2 shows data with 100 Hz baseline
up sampled into 150 Hz, 200 Hz, and 250 Hz.
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Figure 3: RR-interval plot from 100 Hz (baseline) up to 250 Hz (upsampling).

As shown in Figure 2 (left), data with 100 Hz as a baseline, when up-sampled into
150 Hz, 200 Hz, and 250 Hz, will produce different numbers of R peaks in the first 1,000
samples. However, the difference in the number of samples after the resampling process
did not affect overall number of R peaks detected (Figure 2 right). This can also be seen in
the RR-Interval plot results in Figure 3.

3.2 Correlation Coefficients

A comparison of the values of HRV features among original HRV (50 Hz) and upsampled
HRV up to 100 Hz is shown in Table 3. Measurements were carried out using CCC metric
and linear measurements (time and frequency) and non-linear measurements (Poincaré
plot and sample entropy).

Table 3 shows the result after the up-sampling process from 50 Hz to 60 Hz. From
17 features, only 3 have CCC values above 0.9, namely NN20, pNN20, and CVI. For the
remaining upsampling, only the CVI feature shows moderate correlation up to the 80 Hz
limit. Upsampling from 50 Hz to 90 Hz or 100 Hz did not show any correlation in all
features. The resampling results for data with a 100 Hz baseline are shown in Table 4 and
Table 5.

Table 4 shows that when a 100 Hz signal is down-sampled up to 50 Hz, the CVRR
feature correlates with each sampling rate (almost perfect at 90 Hz, 80 Hz, 70 Hz, and
substantial at 60 Hz and 50 Hz). The CSI, SD1/SD2 Ratio, and CVSD features only show
correlation up to 60 Hz with CCC values above 92 % (> 0.92). The NN20 and pNN20
feature correlate up to 70 Hz (CCC value > 0.92). Downsampling results from 100 Hz
to 90 Hz show that many features still correlate with CCC values above 92 %, including
SDRR, RMSSD CVRR NN20, pNN20 (time domain), CSI and CVI (frequency domain), SD1,
SD2, SD1/SD2 Ratio, CVSD (Poincaré plot). Meanwhile, for the Entropy domain (SampEn
feature), CCC still does not show any correlation in any downsampling results. Data with
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Table 3: CCC result for HRV features rom 50 Hz baseline upsampled up to 100 Hz
Features Upsampled coefficients against data

sampled at 50 Hz (CCC)
60 Hz 70 Hz 80 Hz 90 Hz 100 Hz

MeanRR 0.3243 0.1228 0.0663 0.0431 0.0310
SDRR 0.6645 0.4324 0.3639 0.3644 0.4085
RMSSD 0.5501 0.3254 0.2779 0.2998 0.3552
CVRR 0.7164 0.5537 0.5286 0.5846 0.6955
NN20 0.9308 0.8087 0.7414 0.6484 0.5836
pNN20 0.9368 0.8271 0.7544 0.6545 0.5782
VLF 0.0084 0.0003 0.0002 0.0001 0.0024
LF 0.0033 0.0002 0.0002 0.0001 0.0014
HF 0.0028 0.0004 0.0003 0.0002 0.0021
LF/HF Ratio 0.3372 0.2769 0.2981 0.2443 0.2153
CSI 0.8329 0.7825 0.7535 0.7248 0.7091
CVI 0.9663 0.9382 0.9024 0.8675 0.8287
SD1 0.5501 0.3254 0.2779 0.2998 0.3553
SD2 0.7182 0.5051 0.4235 0.4020 0.4364
SD1/SD2 Ratio 0.8329 0.7825 0.7535 0.7248 0.7091
CVSD 0.5921 0.4231 0.4072 0.4701 0.5743
SampEn 0.8841 0.7304 0.6798 0.6300 0.6869

a 100 Hz baseline was also upsampled to 250 Hz with the upsampling results as shown in
Table 5.

As shown in Table 5, a comparison of the CCC values from 100 Hz, which upsampled
up to 250 Hz, indicates that the CVRR, CVSD, and SampEn features correlate with each
sampling rate (except SampEn at 120 Hz). CVRR shows the highest CCC value with a value
up to 99.02 % at a 150 Hz sampling rate. The CSI and SD1/SD2 Ratio features correlate at
several sampling rates with moderate CCC values (between 90 % and 95 %). Like the
results shown in the downsampling process from 100 Hz to 90 Hz, the correlation between
110 Hz and the baseline (100 Hz) is visible in several features; even the SampEn feature
also has a moderate correlation (> 0.92).

Scatter plots are used to provide an overview of the distribution of data between the
original signal (baseline) and resampled signal. The scatter plot consists of the X-axis,
which is the baseline sampling rate, the Y-axis which is the resampling result, the 45-degree
line which is the gold standard (faint line), and the deviation line which is the CCC result
(clear line). Figure 4 shows a comparison of the data distribution for the CVRR feature from
a baseline (50 Hz) when up-sampled to 60 Hz, 80 Hz, and 100 Hz (top image), while the
bottom image shows the results of up-sampling from 100 Hz into 110 Hz, 130 Hz, and 150
Hz. The distribution lines between the original 50 Hz signal and the up-sampling results
are not in a parallel position. This means that the CCC value from the baseline of 50 Hz has
quite a large deviation in the CVRR feature when up-sampled into 60 Hz, 80 Hz, and 100
Hz. Meanwhile, if the original 100 Hz signal is up-sampled into 110 Hz, 130 Hz, and 150
Hz, it shows adjacent/parallel lines. Thus, the up-sampling results shown in Figure 3 have
a high level of correlation.

The CCC calculation results show that ECG signal resamples on several HRV features
have varying impacts, depending on the measured feature and the level of resampling
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Table 4: CCC result for HRV features from 100 Hz baseline downsampled up to 50 Hz
Features Downsampled coefficients against data

sampled at 100 Hz (CCC)
90 Hz 80 Hz 70 Hz 60 Hz 50 Hz

MeanRR 0.3413 0.1050 0.0439 0.0221 0.0123
SDRR 0.9389 0.7526 0.5379 0.3453 0.2038
RMSSD 0.9605 0.8596 0.7056 0.4953 0.2795
CVRR 0.9932 0.9913 0.9941 0.9888 0.9671
NN20 0.9757 0.9544 0.9202 0.7913 0.4645
pNN20 0.9766 0.9560 0.9215 0.7956 0.4752
VLF 0.8613 0.6966 0.3721 0.2163 0.1156
LF 0.7895 0.5675 0.4000 0.2310 0.1439
HF 0.8304 0.5670 0.3967 0.2376 0.1083
LF/HF Ratio 0.8080 0.7606 0.7003 0.6600 0.5321
CSI 0.9420 0.9611 0.9569 0.9262 0.8099
CVI 0.9573 0.8363 0.6587 0.4645 0.2744
SD1 0.9605 0.8596 0.7057 0.4954 0.2796
SD2 0.9267 0.7197 0.4974 0.3177 0.1934
SD1/SD2 Ratio 0.9420 0.9611 0.9569 0.9262 0.8099
CVSD 0.9744 0.9715 0.9773 0.9633 0.8741
SampEn 0.8955 0.8621 0.8616 0.7857 0.7941

Figure 4: Upsampling scatter plot from 50 Hz baseline (top) and 100 Hz (bottom) for coef-
ficient varians of RR-interval (CVRR) feature.

applied to the original signal. Some features may retain information from the original
signal after resampling, while others show significant changes. Therefore, the resampling
process should be carefully considered depending on the features to be used in the HRV
analysis.
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4 Discussion

This research aims to determine the effect of resampling on HRV features in ECG data.
Upsampling is carried out on ECG data from a low sampling rate to a higher sampling rate,
while downsampling is used from a high sampling rate to a lower sampling rate. There are
17 HRV features used in this study, consisting of MeanRR, SDRR, RMSSD, CVRR, NN20,
and pNN20 (time domain), VLF, LF, HF, LF/HF Ratio, CSI, and CVI (frequency domain),
SD1, SD2, SD1/SD2 ratio, and CVSD (Poincaré plot), and sampEn (entropy).

An up-sampling process of ECG data with a 50 Hz baseline was done. Only a few
research studies discuss up-sampling techniques for ECG data, especially for HRV analysis.
The baseline signal, with a 50 Hz sampling rate up-sampled up to 100 Hz, does not show
significant concordance values for most of the HRV features. The results of this research
show that of the 17 HRV features used, only three features show the suitability of the up-
sampling process. These results were only acceptable in up-sampling from 50 Hz to 60 Hz
via the NN20, pNN20, and CVI features.

NN20 in HRV indicates the number of RR-interval pairs with a difference of more than
20 milliseconds (ms). This feature reflects a faster response to external stimuli or changes
in physical activity. Like NN20, the pNN20 feature indicates how significant the heart rate
fluctuations are from all observed heart rates in percentage. Elevated NN20 and pNN20
may indicate the more dynamic response of the body to external stimuli or changing con-
ditions. The cardiac vagal index (CVI) reflects the degree to which parasympathetic (vagal)
activity contributes to heart rate variability. A higher CVI value indicates domination in
parasympathetic activity, which is usually considered an indicator of balance and a better
level of relaxation.

HRV features can provide different information about autonomic nervous activity, both
in sympathetic and parasympathetic nerve activity [16]. Based on the results shown in
this study, up-sampling is not recommended for ECG data with a baseline of 50 Hz. A
sampling rate of 50 Hz can still be used to measure ECG signals without reducing the
accuracy of HRV features in the time domain, but the R-peak waveform experiences slight
distortion [9].

Different results were shown in the upsampling process carried out on data with a base-
line of 100 Hz. ECG data with a 100 Hz baseline, upsampled up to 250 Hz, shows more
features that remain correlated, such as CVRR, CSI, SD1/SD2 Ratio, CVSD, and SampEn.
CVRR is used to evaluate parasympathetic nerve function [10]. CVRR shows how much
variability in the heart rate is about the average heart rate. A decrease in the value of the
CVRR feature indicates dysfunction of the parasympathetic nervous system [17].

Several other features, namely CSI and SD1/SD2 Ratio. CSI is a spectral measure that
measures how related or aligned the high and low-frequency components are in heart rate
variability. A higher CSI value indicates more consistent and balanced nervous activities
[18, 19]. SD1/SD2 ratio in HRV compares SD1 and SD2 from the Poincaré plot. The high
SD1/SD2 ratio indicates that parasympathetic activity predominates, whereas the lower
ratio indicates the predominance of the sympathetic nervous system.

CVSD reflects variations in high-frequency components of the heart rate estimated from
short-term measurements. High CVSD values usually indicate more dynamic and respon-
sive autonomic nervous system activity, while lower values indicate a more regulated bal-
ance between the sympathetic and parasympathetic nervous systems [19]. Sample Entropy
(SampEn) is an analysis method for measuring the complexity and irregularity of HRV
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data [20]. A higher sampEn value indicates a more irregular and complex HRV. In con-
trast, lower SampEn values indicate a greater degree of regularity and consistency in the
RR-Interval.

Upsampling of ECG data with a 100 Hz sampling rate shows better results compared to
ECG data, which has a 50 Hz sampling rate. However, there are still many other features
that do not show significant CCC values, mainly if up-sampling is carried out at more than
110 Hz. For HRV analysis that focuses on parasympathetic nervous system activity (CVRR,
SD1/SD2 Ratio), the up-sampling process on data with a sampling rate of 100 Hz may be
carried out down to 250 Hz. Information resulting from the upsampling process on these
features can still be maintained.

The down-sampling process is carried out only on data with a sampling rate of 100
Hz. Downsampling to 50 Hz shows similar results with upsampling up to 250 Hz. HRV
features such as CVRR, CSI, CVSD, and SD1/SD2 Ratio still show acceptable concordance
values (CCC > 0.9). However, it should be noted that downsampling from 100 Hz for these
four features is only able to retain information down to 60 Hz. Thus, downsampling to 50
Hz is not recommended because it will eliminate information from the HRV features that
have been extracted.

R-peak detection on ECG data with a high sampling rate provides acceptable results
if the down-sampling process is carried out [21, 22]. However, this research shows that
although R-Peak detection does not have a significant difference, HRV feature extraction
on down-sampling data gives different results. Research regarding the effect of downsam-
pling on HRV analysis was also carried out by Kwon [8]. Downsampling results from 1,000
Hz to 50 Hz proved unacceptable for HRV analysis in the time domain or the frequency do-
main. At a sampling rate of 50 Hz, the differences between RMSSD and HF features tend
to have high random error values.

The results of this study show concordance values for several HRV parameters. Up-
sampling was done from 100 Hz to 250 Hz in several domains. However, if up-sampling
is carried out from 50 Hz, HRV feature analysis can be carried out on NN20, pNN20, and
CVI features only at 60 Hz. However, up-sampling ECG data with a baseline of 50 Hz has
not given any contribution to HRV analysis.

Therefore, to analyze HRV features in all domains, a minimum sampling rate of above
100 Hz is recommended. The results of this study also support the latest systematic review
regarding the use of HRV in the field of clinical care. Most studies use a sampling rate as
low as 250 Hz to enable analysis of HRV in various domains [23].

Further research can be carried out by processing the ECG signal using other resam-
pling techniques. Signal processing using different methods (other than interpolation) is
expected to provide better results and has the opportunity so that the ECG data obtained
is no longer dependent on the sampling rate and device for data acquisition.

5 Conclusion

This research evaluates the effect of ECG data resampling on HRV features. Upsampling
from 50 Hz to higher levels did not produce significant concordance values, except for the
NN20, pNN20, and CVI features (in a 60 Hz sampling rate). Upsampling from 100 Hz to
250 Hz produced better results, with some HRV features still having significant concor-
dance values. Downsampling from 100 Hz to 50 Hz is less satisfactory in HRV feature
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analysis. Based on the results of this study, it is recommended to use ECG data with a sam-
pling rate above 100 Hz to produce a more comprehensive HRV analysis in all domains.
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