Room cleaning robot movement using A* algorithm and
imperfect maze

Vera Suryani®”, Kinkin Agustriana?, Andrian Rakhmatsyah®, Riska Reza Pahlevi*
1.2345chool of Computing, Telkom University
1.2347], Telekomunikasi, No. 1, Bandung 40257, Indonesia
“Corresponding email: verasuryani@telkomuniversity.ac.id

Received 17 January 2023, Revised 28 February 2023, Accepted 1 March 2023

Abstract — The room-circling motion of the cleaning robot must be meticulously calibrated to adopt the most efficient and
effective path achievable. During room tracking, the robot’s movement should reach all locations without obstruction and
return to its starting point. It is essential to take into consideration the shortest path when conducting an exploration of
the entire room to achieve maximum efficiency. The shortest path for room exploration might not always be considered by
robots. This research simulated the movement of a room explorer robot using the imperfect maze method and searched a
room that had not been explored using the A* algorithm. Since the robot must return to its initial location after finishing the
cleaning process, an imperfect maze is chosen. Loops are possible in imperfect mazes because dead ends can be “removed”
by connecting them to a nearby path. The A* algorithm was also utilized to discover the shortest route for the robot to return
to its original position after the room exploration. The performance of the robot’s mobility is determined by the parameters
of optimal room exploration distance and response time. This research simulates the development of a robot prototype and
its mobile control application using Android. The simulation results revealed that the imperfect maze could be applied to
explore the room effectively, and A* algorithm is relatively optimal for exploring both the undiscovered room and the path

to return to its original location.

Keywords — A* algorithm, imperfect maze, movement, room exploration

I. INTRODUCTION

As seen by the rising number of persons exposed
to the virus, the transmission of today’s hazardous
diseases is incredibly quick. There are many measures
to prevent the transmission of these viruses, including
maintaining a clean environment. Room sterilization,
which can be accomplished by spraying disinfectant
or emitting Ultraviolet (UV) rays, is one method for
maintaining cleanliness. The infection might still be
transmitted to the cleaners if the sterilizing process
is not performed correctly. To decrease the risk of
the virus spreading to people, an automated sterilizing
procedure with robots may be an alternate method.

Room cleaning robots are practical and cost-
efficient. They are considerably less expensive than
costly housekeepers. The machine can be programmed
to clean precisely to specifications while requiring
minimal maintenance. The robot employed to do the
sterilization must be able to comb all rooms for optimal

Copyright ©2023 JURNAL INFOTEL
All rights reserved.

results. In doing the task, the robot can move auto-
matically, controlled by the system control through the
remote control or self-manage [1]-[4]. This process
aims to make human tasks easier and to be highly
useful in the cleaning process in the house [5]-[8]. To
make the robot able to move and walk automatically,
it needs a method to control the speed and direction of
the cleaning. In this case, the imperfect maze method is
used to determine the speed and direction determined
as needed [9]-[11]. The imperfect maze method is
one of the maze methods in which the path traversed
is not unique but something highly possible for an
intersection. In its journey, the robot prototype must go
through all the paths and calculate the shortest distance
to return to its initial place using the A* algorithm.

A study by Ullah et al. [10] proposed the Nearest-
to-Final Goal and Unvisited Gap (FNUG), a novel
gap-based strategy for traversal imperfect-unknown
mazes. The technique is computationally efficient and
can handle loops and dead ends thanks to the revisit

check. This technique primarily focuses on finding
gaps around the robot by analyzing the depth scans
and building a topological map in the shape of a tree
using the coordinate system. The robot’s unexplored
neighbor gap is then chosen for route planning, relying
on its Euclidean distance from the final destination.
Lastly, Dijkstra’s method determines a path from the
robot’s location to the sub-goal.

Numerous studies examine the usage of mazes, but
few employ imperfect mazes. Some researchers [17]-
[21] have utilized mazes for robot mobility. The re-
search utilizing the maze will be described below.

In research conducted by Ecsedi er at. [12] entitled
”The Development of an Autonomous Maze Robot”
in 2019, a robot that could pass through a simple
labyrinth by keeping on the path, turning, and finding
the way out from the labyrinth was made. The results
showed that the robot could pass through each classical
labyrinth without touching the wall.

A study by Hermanto et al. [13] depicted that the
prototype showed that the A* algorithm could be used
in a hexapod robot to get the fastest path to the
destination. The average speed of the hexapod robot
to walk from the initial point at 10,27 to the last point
(20,5). The results of the first average were taken from
the data without any interruption (30,92s); using the
interruption, the average speed obtained was 34,59s.

In [14], the A* algorithm was used for the Non-
Playable Character (NPC) Ghost, a gaming character
who relentlessly pursues Pacman around the maze
until Pacman loses his life and the game ends. The
A* algorithm is implemented so that the ghost can
locate the quickest route to Pac-Man, increasing the
game’s intensity. From the research findings, it can be
stated that the implementation of the A* algorithm was
effective 91.5% of the time but still requires refinement
to achieve greater accuracy. This conclusion showed
the ability of the A* algorithm to find the solution
in minimum time compared to any existing graphic-
seeking algorithm [15].

In this research, the A* algorithm is selected and
combined with the imperfect maze mapping method
for the room mapping consisting of rows and columns.
The shortest route selection by the robot detected four
directions (front, back, left, and right), and comparison
and selection of the shortest values were prioritized in
the horizontal axis (node x). In selecting the shortest
path of the A* Algorithm, it applied the heuristic func-
tion in which this algorithm removed any unnecessary
steps by considering that the removed steps were the
ones that would never reach the expected solution. In
other words, a heuristic is the optimization function
that makes the A* algorithm better than any other.
Moreover, heuristics may be enhanced to produce
better outcomes [16].

This study aimed to make a simulation of the
robot prototype for the floor cleaning process that can
infiltrate human drudgery. The imperfect maze was
used to help the robot prototype seek the path of room
exploration, while the A* algorithm was used to find
the path to return to the initial place.

The presentation of this paper starts with the related
studies and the design of the system built, evaluation,
and the last part consists of a conclusion and recom-
mendation related to the research results.

II. RESEARCH METHOD

The research method section of our study includes
several subsections, including the imperfect maze, A*
algorithm, system design, and hardware block diagram.

A. Imperfect Maze

Maze is a route through which one has to find a
way. The robot could use the maze to find the route it
needs to go. The path passed from the initial point to
the last point in the perfect maze is always unique or
cannot be similar.

An imperfect maze uses paths that are not always
unique; it can intersect by itself, making it possible for
the occurrence of the loop, as seen in Fig. 1.

1 2 3 4 1 2 3 4
1 1
2 2
3 3 | ‘
4 4

IMPERFECT MAZE PERFECT MAZE

Fig. 1. Perfect and imperfect maze.

B. A* Algorithm

A* algorithm is one of the algorithms of path
finding as the combination of Uniform Cost Search
and Greedy Best First Search. Uniform Cost Search
selects the smallest distance from the initial knot to the
next until reaching the destination; meanwhile, Greedy
Best First Search uses the heuristic function, where
this function plays an essential role in controlling the
search of the path in A* algorithm [13]. Several re-
search utilize the A* algorithm extensively to discover
the shortest pat [22]-[25]. Mathematically, the function
used in A* algorithm can be written as the following
equation:

f(n) =g(n) + f(n) (D
g(n) = VXntyn? (2)
h(n) = | X (target) — X (n)| + |Y (target) — Y'(n)| (3)

where, f(n) is the lowest estimated value, g(n) is
the value from starting node to n'" node, and h(n)

Fig. 2. Robot prototype.

is the heuristic function used to estimate the distance
from node n to the destination location.

C. System Design

The design of the system mechanism consists of
hardware, software, dan brain ware.

1) Hardware

As the microcontroller in this system, Arduino is
in NodeMCU to connect to the software on the user’s
smartphone. When the robot obtains the input value, it
can walk according to the column and lines. For the
robot’s movement and its hindrance, they are detected
by IR Sensor.

2) Software

The design of this software is to manage the val-
ues of the room size on the software determined. In
addition, the software can also be used to control the
robot’s speed manually.

3) Brain ware

Users can control the robot’s movement and insert
the room size available in the robot application. The
system of the robot prototype built has the design as
seen in Fig. 2.

In Fig. 3, there are three infrared sensors (front,
left, and right) to detect any interruptions during the
search. NodeMCU is the connector of the software to
the user’s smartphone. Relay as the dc motor and the
vacuum cleaner fan. The encoder controls the robot’s
speed distance sensor, while the battery controls the
robot’s power.

D. Hardware Block Diagram

The diagram block in Fig. 4 explains the relation
of each hardware to control the robot. Microcontroller,
such as the Arduino Mega 2560, is used to process in-
put and produce output values. The system input comes
from the infrared sensor to detect the interruption in the
form of high and low digital values, sensor gyroscope
mpu6050 as the determiner of the direction of the robot
speed, and nodeMCU esp8266 as the Speed signaller
when the robot is manually controlled. The process
output results on the microcontroller in the form of

pwm values, to move the left and right servo motor
and high and low digital values to activate the vacuum
cleaner fan.

III. RESULT

In the results section of our study, we present the
findings of several subsections, including the testing
results of the Infrared (IR) obstacle avoidance sensor,
the result of the test on the LM393 speed sensor, the
result of the test on software functionality, and the
result of the test on the A* algorithm.

A. Testing Result of IR Obstacle Avoidance Sensor

Based on the data from the test results, as shown in
Table 1, the infrared sensor used was to get accurate
test values. This result was based upon the data of
the test that later on were compared to real size using
rulers, showing the good results from sensor 1, sensor
2, and sensor 3.

Table 1. Infrared Sensor Reading

Score of
No Infrared Sensor Actual
: Reading distance
@ (2) 3)
1 1 cm 1 cm 1cm 1cm
2 2cm | 2cm | 2cm 2 cm
3 3cm | 3cm | 3cm 3 cm
4 4cm | 4cm | 4cm 4 cm
5 Scm [Scm | S5cm 5 cm

B. The Result of the Test on the LM393 Speed Sensor

The accuracy of the distance with the input was
discovered in eight experiments, according to the re-
sults of the test on the LM393 sensor in Table 2
from 10 times of testing. While, the remains obtained
inappropriate results. These findings were because the
influence of the number of pulse encoders required
in experiments 4 and 6 was not appropriate with the
number of pulses required. From the calculation results
in the equation to seek the number of pulse encoders
in Chapter 3, the number of pulses in experiment
4 exceeded the required number of pulses, ie., 11.
In contrast, in experiment 6, the pulse number was
fewer than the number of pulses required. This result
caused the distance of the robot’s mileage was not as
appropriate as it should be.

Table 2. Infrared Sensor Reading

Number Distance . Encoder
Expected Distance .

of measurement Distance | Accuracy Reading
Attempt results (cm) Data

1 30 cm 30 cm Ok 11 pulse

2 30 cm 30 cm Ok 11 pulse

3 30 cm 30 cm Ok 11 pulse

4 31 cm 30 cm Not ok 12 pulse

5 30 cm 30 cm Ok 11 pulse

6 29 cm 30 cm Not ok 10 pulse

7 30 cm 30 cm Ok 11 pulse

8 30 cm 30 cm Ok 11 pulse

9 30 cm 30 cm Ok 11 pulse

10 30 cm 30 m Ok 11 pulse

IF. Obstacls Sensors

a a a
Moteor Driver
: | v
Moter DC Moter DC Rl
= L] | i ;
s == 4= = == 1

LM383 LM 383
| Ll il Belay 3V
! NodeMCU
Battery |
12V (5.7x3)
Fig. 3. Hardware components of the robot.
IR Sensor Gyroscope Sensor NodeMCU
Obstacle Avoidance MPU 6050 ESP8266
Obstacle Determine Robot Robot manual
Detection Direction control
Relay 5V
Main Microcontroller (Arduino Mega 2560) => Vacuum Cyl,eauer Fan
on/off command

Left side motor 0

Left Motor Servo

G Right side motor

Right Motor Servo

Fig. 4. Hardware block diagram.

I _ Table 3. The Results of the Test on the Functionality of System

Fig. 5. Encoder result.

Software
No Command input Expected condition Real Condition Sg“ab'.h.ty of
Robot did the action
1 Press the top Robot did the action to move forward Prober
arrow button to move forward in a stable and P
straight condition
Robot did the action Robot did the action
Press the bottom to move back
2 to move back . Proper
arrow button in a straieht line with a stable and
& straight condition
. Robot did the action | Robot did the action
Press the right
3 to turn around to turn around Proper
arrow button . .
clockwise clockwise
Press the left Robot did the action Robot did the
4 n . . Proper
arrow button counter clockwise action counter action
Robot moved to
5 Press the automatic Robot moved to the automatic mode Pr
button the automatic mode and did the room oper
searching

Auto Pilot

Ukuran Bidang

ONO @Hcdel

Response Time

0.0 detik

C. Result of the Test on Software Functionality

From the test results on the functionality in Table 3, é
the robot could do the basic functionalities such as J
moving forward and back, turning right and left, and
changing the mode of the robot into the automatic
mode. Fig. 6 depicted the application interface for the
simulation.

9

~

The test on the response time was done to ob- Fig. 6. Application interface.

serve how long the time took when the users gave
the command for the robot functionality through the
smartphone. Response time was calculated when the
smartphone sent the request for the command message
to the device of nodeMCU. The Arduino Mega was
then asked to process the command message request
into a robot action, and nodeMCU delivered a confir-
mation message to the smartphone informing the user
that the operation had been completed.

The test was done by managing the distance be-
tween the robot and smartphone in the range of 1 to
7 meters. Then, the messages were input by 30 times
to obtain the average values of response time in each
distance. The commands were input randomly based
upon the actions of the robot such as moving forwards,
backwards, left and right. Based on the results of the
test as seen in the graph in Fig. 7, the distance between
the robot and smartphone affected the values of the
response time obtained.

O2 —T— 71— T 71T 1 T

| | —e— Response time

Average time (sec)

Distance (meter)

Fig. 7. Application response time.

This outcome arose because the response time val-
ues were precisely related to the test distance. Fig. 7
illustrates that as the distance between robot and smart-
phone increases, so does the response time. In contrast,
the response time decreases as the distance between the
robot and smartphone decreases.

This limitation is a result of the network technology
used to transmit data from the from the smartphone to
the robot.

D. Result of the Test on A* Algorithm

Nodes 1 and 2 were used to evaluate the robot’s
ability to explore varied locations, particularly 6x5 m
and 6x6 m. The first node at coordinate (2,6) had the
F-value of 12,3.

gn) = VXn2+Yn2 =2 +62=63 (4
h(n) =|1=2|+1-6/=6)
f(n) =63+6=123 (6)

The second node at coordinate (1,5) had the F-value
of 9,1.

gn) =vVXn2+Yn2=1124+52=51 (7)
h(n)=|1—1|+|1—5/ =4 (8)
f(n)=51+4=093)

From the results (6) and (9), it can be found that the
second node had the lowest F-value; thus, the position
shifted to the second node. After moving, all new nodes
around Tnow were calculated to obtain the lowest F-
value as the path passed through Tnow to the initial
point. It can be found that the traveling route from
the last point to the destination expected was through
the following coordinates (1,5), (1,4), (1,3), (1,2), and
coordinate (1,1) as the coordinate of the initial storage
of the robot. The processes for finding pathways in an
imperfect maze using the A* algorithm are explained
in Tables 4 and 5.

Table 4. Calculation Results of Algorithm A* for Size 6x6

(2,6)
19 | g=63
6 LAST > (3,6) | (46) | (56) | (6,6)
poiNt | H=0
F=123
o eE)
=511 G54
5 H=4 | S0 165 | @y | 65| 69
F=0,1 1=
Tnow F=104
4 24)
G=411 6245
4 H=4 H_— 4 B4 | G | 64 | (64)
F=4l | p_gs
Tnow?2 -
e
G=32 1 536
3 H=2 H_— é 33) | 43) | 5.3 | 63)
F=521 g6
Tnow3 -
2 [an
G=22 | 513
2 | H=1 ey | ey | 6o | 6o
F=32"1 p_43
Tnow4 -
(1,1)
G= 14
H=0
ol enS | en [en | an|en | en
INITIAL
POINT
XY] 3 3 3 5 6

First node at coordinate (5,5) had the F-value of
15,1.

gn) =VXn2+Yn2=+52+52="71 (10)
h(n)=|1—5/+]1—5 =8 (11)
f(n)=71+8=15.1 (12)

Second node at coordinate (6,4) had the F-value of
15,2.

Table 5. Calculation Results of Algorithm A* for Size 6x5

2.5) (3.5) 4.5) (5.5)
G—’i 4 G=5.8 G=6,4 G=7,1 (6,5)
5 (1,5) Hos H=5 | H=7 | H=8 | LAST
F=]_0‘4 F=10,8 | F=13,4 | F=15,1 POINT
- Tnow2 | Tnowl Tnow
(3.4)
24 G=35 4.4) (5.4) (6.4)
4 (14) G=48 H - 5 G=5,7 G=6,4 G=172
k H=4 F—_IO H=6 H=7 H=28
F=38.8 - F=11,7 F=13,4 F=15,2
Tnow3
(2,3) (3.3)
D1 6=k | G2
3 H_: H=3 H=4 4,3) (5,3) (6,3)
Fesy | F=65 | F=62
T Tnow5 Tnow4
(1,2) (2,2)
G=22 | G=28 | 2
2 H= H=2 He (4.2) (5,2) (6,2)
F=32 | F=48 | "¢
Tnow7 Tnow6 -
an |)
1 INITIAL H =’ 3,1 “4,1) 5,1) 6,1)
POINT F=32
XY 1 2 3 4 5 6
g(n):\/Xn2+Yn2:\/62+42:7.2 (13)
h(n)=1-6/+]1—4|=38 (14)
f(n)=72+8=15.2 (15)

From the results (12) and (15), it can be inferred that
the first node had the lowest F-value in the room with
the size of 6x5 meters; thus, the position was shifted
to the first node. After moving, all new nodes around
Tnow were calculated to get the lowest path passed
by the Tnow to the initial point. It can be found that
the travel route from the last point to the destination
expected was through the following coordinates (5,5),
4.,5), (3,5), (3,4), (3,3), (2,3), (2,2), and coordinate
(1,2) as the coordinate of the initial storing place of
the robot.

IV. CONCLUSION

From the results of this research, it can be concluded
that the robot prototype successfully works automati-
cally. It followed the rules of the ordered imperfect
maze and the direction was determined. The robot can
also perform floor cleaning and pass through all floor
blocks from the initial points to the last points. The
robot can also explore the room while illuminating
using a UV light for sterilization. The system’s per-
formance from the response time parameter showed
that the optimal distance between the robot and the
smartphone was around 1 to 7 meters. The farther
the distance between the robot and the smartphone,
the larger the response time values. This research can
be improved using hardware with higher specifications
for better results. The use of other search algorithms
or improving the A* algorithm can also be used
in determining the fastest path. The results can be
compared to determine the most optimal algorithms.

(1]

(2]

(3]

(4]

(31

(6]

(71

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

REFERENCES

M. B. Alatise, G. P. Hancke, “A review on challenges of
autonomous mobile robot and sensor fusion methods,” IEEE
Access, 2020.

B. K. Patle, G. Babu L, A. Pandey, D. R. K. Parhi, and
A. Jagadeesh, “A review: On path planning strategies for
navigation of mobile robot,” Def. Technol., vol. 15, no. 4, pp.
582—606, 2019.

S. Erfani, A. Jafari, and A. Hajiahmad, “Comparison of two
data fusion methods for localization of wheeled mobile robot
in farm conditions,” Artif. Intell. Agric., vol. 1, pp. 48—S55,
2019.

F. H. Ajeil, I. K. Ibraheem, A. T. Azar, and A. J. Humaidi,
“Grid-based mobile robot path planning using aging-based ant
colony optimization algorithm in static and dynamic environ-
ments,” Sensor Journal, vol. 20, no. 7, 2020.

M. A. H. Ali and M. Mailah, “Path planning and control of
mobile robot in road environments using sensor fusion and
active force control,” IEEE Trans. Veh. Technol., vol. 68, no.
3, pp. 2176—2195, 2019.

M. A. Viraj J. Muthugala, M. Vega-Heredia, R. E. Mohan, S.
R. Vishaal, “Design and control of a wall cleaning robot with
adhesion-awareness,” Symmetry Journal, vol. 12, no. 1, 2020.

A. Z. Hasibuan, and M. S. Asih, “Rancang bangun robot
vacum cleaner berbasis mikrokontroler dengan pengendali
smartphone android,” InfoTekJar Jurnal Nasional Informatika
dan Teknologi Jaringan, vol. 1, 2019.

V. Oza and P. Mehta, “Arduino robotic hand: Survey paper,”
in 2018 Int. Conf. Smart City Emerg. Technol. ICSCET 2018,
pp. 1—5, 2018.

M. Ihsan, D. Suhaimi, M. Ramli, S. M. Yuni, and 1. Maulidi,
“Non-perfect maze generation using Kruskal algorithm,” J.
Nat., vol. 21, no. 1, 2021.

Z. Ullah , X. Chen , S. Gou, Y. Xu, and M. Salam, “FNUG:
Imperfect mazes traversal based on detecting and following
the nearest-to-final-goal and unvisited gaps,” IEEE Robotics
and Automation Letters, vol. 7, no. 2, 2022.

L. Peachey, “Parameterized maze generation algorithm for
specific difficulty maze generation,” Association for Computing
Machinery, vol. 1, no. 1, 2022.

E. Ecsedi, H. Silaghi, E. Mihok, and V. Spoiala, “The develop-
ment of an autonomous maze robot,” in Int. Conf. Eng. Mod.
Electr. Syst., pp. 169—172, 2019.

D. Hermanto and S. Dermawan, “Penerapan algoritma A-Star
sebagai pencari rute terpendek pada robot hexapod,” J. Nas.
Tek. Elektro, vol. 7, no. 2, pp. 122-129, 2018.

F. Badri, M. F. A. Habib, “Implementasi algoritma A* (A Star)
pada NPC (non-playable character) game pacman menggu-
nakan game engine unity 5 berbasis android,” Teknika Journal,
vol. 4, no. 2, pp. 49-56, 2020.

N. Kumar and S. Kaur, “A review of various maze solving
algorithms based on graph theory,” IJSRD - Int. J. Sci. Res.
Dev., vol. 6, no. 12, pp. 2--6, 2019.

Y. Li, D. Dong, X. Guo, “Mobile robot path planning based
on improved genetic algorithm with A-star heuristic method,”
in IEEE 9th Joint International Information Technology and
Artificial Intelligence Conference (ITAIC), 2020.

H. Batti, C. B. Jabeur, H. Seddik, “Autonomous smart robot
for path predicting and finding in maze based on fuzzy and
neuro-Fuzzy approaches,” Asian Journal of Control, pp. 1-10,
2020.

S. Paul, C. B. C. Latha, “Shortest path traversal in a maze with
wall following robot,” AIP Conference Proceedings, 2022.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

X. Zhang, Y. Liu, D. Hu, L. Liu, “A maze robot au-
tonomous navigation method based on curiosity and reinforce-
ment learning,” in The 7th International Workshop on Ad-
vanced Computational Intelligence and Intelligent Informatics
(IWACIII2021), Beijing, China, 2021.

M. Nadour, L. Cherroun, “Using flood-fill algorithms for
an autonomous mobile robot maze navigation,” International
Journal of System Assurance Engineering and Management,
vol. 13, pp. 546--555, 2022.

R. Covaci, G. Harja, I. Nascu, “Autonomous maze solving
robot,” in IEEE International Conference on Automation, Qual-
ity and Testing, Robotics, AQTR, 2020.

D. Foead, A. Ghifari, M. B. Kusuma, N. Hanafiah, and E.
Gunawan, “A systematic literature review of A* pathfinding,”
in Procedia Comput. Sci., vol. 179, no. 2020, pp. 507--514,
2021.

S. Erke, D. Bin, N. Yiming, Z. Qi, X. Liang, and Z. Dawei,
“An improved A-Star based path planning algorithm for au-
tonomous land vehicles,” Int. J. Adv. Robot. Syst., vol. 17, no.
5, pp. 1—13, 2020.

0. O. Martins, A. A. Adekunle, O. M. Olaniyan, and B. O.
Bolaji, “An Improved multi-objective a-star algorithm for path
planning in a large workspace: Design, implementation, and
evaluation,” Sci. African, vol. 15, 2022.

Y. Li, D. Dong, and X. Guo, “Mobile robot path planning
based on improved genetic algorithm with A-star heuristic
method,” in Information Technology and Artificial Intelligence
Conference, 2020, vol. 9, pp. 1306—1311, 2020.

