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Abstract: Pap-smear images can help in the early detection of cervical cancer, but the man-
ual interpretation by a pathologist can be time-consuming and prone to human error. Se-
mantic segmentation of the cell nucleus and cytoplasm plays an essential role in Pap-smear
image analysis for automatically detecting cervical cancer. This research proposes a mod-
ified U-Net architecture by adding batch normalization to each convolution layer. Batch
normalization aims to accelerate the convergence of the weight during training, thus over-
coming the vanishing gradient problem. The application of U-Net and batch normalization
to pap-smear image segmentation provides good performance results, including accuracy
of 91.4 %, specificity of 87.7 %, F1-score of 81.7 %, and precision of 83.7 %. Unfortunately,
the sensitivity result obtained is only 79.9 %. The results show that the proposed mod-
ification of the U-Net architecture with batch normalization improves the segmentation
performance for cervical cancer cells in pap-smear images. However, improvement in ar-
chitecture is still required to increase the ability to overcome overlapping areas between
the nucleus, cytoplasm, and background.
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1 Introduction

Cervical cancer is one of the most common cancers in women worldwide. The disease is
characterized by the uncontrolled growth of malignant cells in the cervix or cervix area.
According to the World Health Organization (WHO), in 2020, 604,000 women in the world
are expected to develop cervical cancer, and about 342,000 women will die from the dis-
ease [1]. Detecting and diagnosing cervical cancer is very important to increase the pa-
tient’s chance of recovery and reduce the mortality rate. The pap-smear examination has
become a commonly used method for early detection of cervical cancer. Samples of cervix
cells are collected and analyzed under a microscope for indications of precancerous or can-
cerous changes [2]. However, manual interpretation and analysis by pathologists of pap-
smear images is usually complex and time-consuming. In addition, there is a risk of human
error in identifying and categorizing cervical cancer cells with high accuracy [3]. An au-
tomatic diagnosis system is needed to analyze pap-smear images and diagnose cervical
cancer quickly and accurately, one of which is image segmentation. Cervical cancer cell
segmentation is very important in pap-smear image examination because cervical cancer
cells can provide important information about the presence and severity of cervical can-
cer [4].

Research by Wijaya et al. [5] segmented the nucleus and cytoplasm of cells in pap-smear
images using the Markov Random Field method. This research only obtained an accuracy
value of about 75%, while other evaluation values were not calculated. Other research by
Purwono et al. [6] segmented cervical cancer cells on CT-scan images using the K-Nearest
Neighbors (KNN) method. This research also only obtained an accuracy value between
57-62%, while other evaluation values were not calculated. However, both researchers still
used conventional methods. Conventional methods need to improve in distinguishing one
object from another, especially in complex images that have many details.

The use of deep learning techniques has grown in recent years. Convolutional Neural
Network (CNN) is one such deep learning method that has made significant progress in
complex image analysis. A CNN architecture commonly used in complex image analysis is
the U-Net. U-Net has the advantage of segmenting and diagnosing diseases accurately [7].
Research by Zhang et al. [8] segmented cervical cancer cell images using dilated CNN. This
research resulted in an F1-score and precision below 83%, while other evaluation values
were not calculated. Another research by Li et al. [9] segmented cell nucleus and cyto-
plasm images using GDLA U-Net. However, the precision and sensitivity obtained for
cytoplasmic cells are still below 80%. However, both researches only performed binary
segmentation. Semantic segmentation is required to detect cervical cancer cells accurately.
Semantic segmentation in cervical cancer involves extracting the nucleus, cytoplasm, and
background objects simultaneously rather than just one of the cells.

U-Net architecture is one of the suitable architectures for semantic segmentation as it
is a deep network. However, the number of layers in the U-Net architecture can increase
the parameters and complexity of the network. A too complex network can hinder the
convergence of the weights and cause vanishing gradients [10]. Batch Normalization is a
regularization method applied to accelerate convergence and enhance stability during the
training process. Batch Normalization works by normalizing the input to each layer in the
network [11]. Research by Ju et al. [12] conducted cervical cancer CTV image segmentation
using the addition of batch normalization to the encoder path on a Dense V-Net architec-
ture. The result obtained is the F1-score value reaches 87.5 %. However, this research only
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used 113 CT data and only performed binary segmentation. Another research by Rhee
et al. [13] also segmented CT scan images of cervical cancer using the addition of batch
normalization at the end of each convolution layer. The average F1-score value obtained
is 86 %. The data used is quite large, namely 2254 CT data, but only performs binary
segmentation.

This research proposes a modification to the U-Net architecture with batch normaliza-
tion. Batch normalization is added to each convolution layer on the encoder and decoder
paths of the U-Net architecture. The addition of batch normalization can reduce the varia-
tion of input distribution to the network layers during the training process, thus accelerat-
ing weight convergence. The addition of batch normalization to the U-Net architecture is
expected to improve the model’s performance in performing semantic segmentation with
3 labels (nucleus, cytoplasm, and background) on pap-smear images.

2 Research Method

The workflow in this research is divided into several steps. These steps are data description,
pre-processing, training data, testing data, and performance evaluation. The workflow in
this research is represented in Figure 1.

Figure 1: Workflow of the research in cervical cancer cell segmentation.

2.1 Data Description

This research uses the dataset Herlev pap-smear comprising 917 BGR images in .BMP
(Bitmap image file) format. This dataset was obtained from Herlev University Hospital
at the Department of Pathology and can be accessed through the website [14]. Images of
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pap-smears have different dimensions and resolutions. The structure of the nucleus and
cytoplasm within the pap-smear image is shown in Figure 2. In Figure 2, it shows that
the structural part of the pap-smear image consists of the nucleus (cell nucleus) labeled by
the red circle and the cytoplasm (cells surrounding the nucleus) labeled by the blue circle.
The structure of the nucleus and cytoplasm is what the ophthalmologist uses as a way to
diagnose cervical cancer.

Figure 2: Nucleus and cytoplasm structure in pap-smear image.

2.2 Preprocessing

Preprocessing is the initial image processing process that aims to improve and increase the
image quality.

2.2.1 Data augmentation

Data augmentation is a technique used to increase the number of training data. Data aug-
mentation aims to make the model created identified and well-recognized [15]. The data
augmentation technique employed in this research is flipping, which involves duplicating
the data by flipping the image horizontally or vertically [16].

2.2.2 Image enhancement

Image enhancement aims to remove noise, increase contrast, and preserve all details in the
image to prevent any loss of information. Several image quality enhancement techniques
used in this research include sharpening filters and image resizing. A sharpening filter is a
technique that enhances contrast by sharpening object boundaries and details in the image.
This technique is accomplished by increasing the intensity differences between adjacent
pixels [17]. Mathematically, the sharpening filter is computed using the Laplacian filter
approach using (1) [18].

(
▽2S

)
(x, y) =

∂2S

∂x2
(x, y) +

∂2S

∂y2
(x, y) (1)
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Where, ▽2 is the Laplace operator, S(x, y) is a two-dimensional image function of -axis
and -axis. After applying the sharpening filter, the next step is to resize the images to the
same dimensions using image resize. Image resize is a method used in the field of image
processing that involves changing the pixel size of an image without altering the essential
information contained within the image [19].

2.3 Semantic Segmentation

Semantic segmentation is a method within digital image processing that focuses on recog-
nizing and separating image objects at the pixel level. This involves labeling each pixel
based on existing categories or classes of objects [20]. Semantic segmentation in cervical
cancer involves extracting the nucleus, cytoplasm, and background objects. Some of the
operations performed in semantic segmentation include:

2.3.1 Convolutional layer

The convolution layer is the base layer in CNN performing convolution operations on the
input images. This layer consists of some filters or kernels that are shifted gradually on the
input image to generate feature maps. The convolutional layer learns the visual features
representation of the input image through a convolution process with customized filters or
kernels. The convolution calculation process in the convolutional layer is obtained using
(2) [21].

ai,j =

(
n−1∑
u=0

n−1∑
v=0

du+i,v+j × ku+1,v+1

)
+ bq (2)

for i = 1, 2, . . . , n and j = 1, 2, . . . , n, aij represents the entry of the input matrix resulting
from the convolution process at the i-th row and the j-th column, du+i,v+j represents the
entry of the input matrix at the u + i-th row and v + j-th column, ku+1,v+1 represents the
entry of the kernel matrix at the u+ 1-th row and v + 1-th column and bq is the biar for the
q-th kernel.

2.3.2 Batch normalization

Batch normalization is a normalization process performed on each layer within a CNN
network, aiming to improve accuracy and time efficiency during the training process. The
batch normalization process is carried out by calculating the mean value (µj) and variance
(σ2

j ) for each mini-batch using (3) and (3) [21].

µj =
1

m

m∑
i=1

aij (3)

σ2
j =

1

m

m∑
i=1

(aij − µj)
2 (4)

where, j represents the count of columns within the mini-batch, m represents the quantity
of data present in one mini-batch, and aij represents the entry within the input matrix at
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the i-th row and j-th column. Furthermore, the entry of the input matrix (aij) is normalized
using (5).

âij =
aij − µj√
σ2
j + ε

(5)

where, âij is the entry of the normalized matrix, and is the smallest constant value.

2.3.3 Activation function

The activation function serves as a non-linear function utilized for the purpose of intro-
ducing non-linearity and complex mapping capabilities in a CNN network. The activation
function does not change the dimensions of the feature maps but only alters the values
of the input feature maps [22]. The activation functions used in this research are rectified
linear unit (ReLU) and softmax. The ReLU activation function is a non-linear function that
assigns a value of 0 to all negative pixel values within an image. The calculation of the
ReLU activation function is obtained using (6) [22].

r(âij) = max(0, âij) =

{
âij if , âij ≥ 0

0 if , âij < 0
(6)

where, âij is the input value of the image and r(âij) is the output result of the ReLU. The
softmax activation function is a mathematical function utilized to compute the probabilities
for each predicted label, where the probabilities are exponential probabilities normalized
from the class observations. The softmax activation function is obtained using (7) [23].

s(t)j =
etj∑K
k=1 e

tk
(7)

for k = 1, . . . ,K where K represents the quantity of classes and tj represents the entry of
the input matrix.

2.3.4 Max pooling layer

The max pooling layer is one of the types of pooling layers that diminishes the dimension-
ality of the feature maps produced by the preceding layer. It achieves this by extracting the
patch from the convolutional feature maps and selecting the highest value in each segment
to undergo shifting [24].

2.3.5 Transposed convolution

A Transposed convolution is a convolutional layer used to increase the dimensionality of
the input by inserting zeros between adjacent elements. This layer performs the inverse
operation of a regular convolutional layer [25].

2.3.6 Concatenate layer

The concatenate layer is a layer in a CNN network used to combine the outputs from mul-
tiple preceding layers into one. In this layer, the concatenation is done horizontally by
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combining information from different layers and features obtained from different levels of
hierarchy in the network [26].

2.3.7 Loss function

The loss function is a metric utilized during the process of training a model to assess the
discrepancy or gap between the expected (ground truth) values and the model’s predicted
values. In semantic segmentation, the loss function commonly used for multiclass labels
or labels with more than two object classes is categorical cross-entropy. The categorical
cross-entropy value is obtained using (8) [27].

L(y, s) = −
m∑
i=1

yi × log si (8)

where, m represents the number of rows within the resultant output matrix, si is the
entry of the predicted segmentation output matrix at the i-th row, yi represents the entry
of the ground truth matrix at the i-th row, and L is the value of the resulting categorical
cross-entropy.

2.4 Modified Architecture

The semantic segmentation process of the nucleus and cytoplasm is performed by apply-
ing the U-Net architecture with the addition of batch normalization into every convolu-
tional operation. The addition of batch normalization aims to enhance stability and training
speed, as well as help in overcoming the vanishing gradient problem. The modification of
the architecture proposed in this research for performing semantic segmentation is shown
in Figure 3. It shows the modified U-Net architecture consisting of two paths: the left side
containing the encoder path and the right side containing the decoder path. The encoder
path includes a convolution block, batch normalization, ReLU activation, and max pooling.
Meanwhile, the decoder path consists of a convolution block, transposed convolution, and
softmax. The encoder path begins with a convolution operation using a 3×3 kernel and
filters. This convolution process is performed concurrently alongside the ReLU activation
function. Next, the resulting feature maps from the convolution process will undergo a
batch normalization process to be normalized. Then, a max pooling operation with a size
of 2×2 is performed to reduce the dimension of the feature maps. In the encoder path, there
are four convolution blocks, where each block doubles the number of feature maps using
filters of sizes 64, 128, and 256 respectively. This is followed by a fifth block that serves as
a bridge between the path of the encoder and the decoder. It involves identical procedures
to those employed in the initial block but without the need for subsequent max pooling.
Next, the decoder path begins with a transposed convolution operation of size 2×2, per-
formed simultaneously with the concatenate operation between the feature maps from the
encoder path and the feature maps from the decoder path. This step aims to restore the
dimensionality of the feature maps to their original size. Then, the decoder path continues
with the same process as the first block in the encoder path, without using max pooling.
In the decoder path, there are four convolution blocks, where the count of feature maps in
each block is divided by two until it returns to the original count of feature maps. The final
step in the decoder path is a convolution process with a 1×1 kernel, performed simulta-
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neously with the softmax activation function. This process aims to generate an image that
has undergone segmentation by obtaining probabilities for each object class.

Figure 3: Modified U-Net architecture with batch normalization.

2.5 Evaluation

In this research, a performance evaluation is carried out on the results of image enhance-
ment that has been improved using the sharpening filter method. This performance eval-
uation uses the Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index Metrics
(SSIM) metrics. Furthermore, in the semantic segmentation of the nucleus and cytoplasm,
each pixel is grouped into three classes: nucleus cells, cytoplasm cells, and background.
Evaluation of the model’s performance in the semantic segmentation process is done using
the confusion matrix. These results of the methods used in semantic segmentation provide
insight into the U-Net Batch Normalization architecture’s performance in accurately seg-
menting the nucleus and cytoplasm. In this research, the performance evaluation metrics
used include accuracy, sensitivity, specificity, F1-score, and precision.

3 Result

3.1 Preprocessing

Data augmentation can improve the amount of training data without losing semantic infor-
mation and help reduce bias in the data. In this research, horizontal and vertical flipping
techniques were used in the data augmentation process. The data augmentation process
on pap-smear images is shown in Figure 4. It shows that in the horizontal reversal tech-
nique, the image is rotated horizontally, while in the vertical reversal technique, the image
is rotated vertically. This creates a new variation in the dataset by changing the direction or
orientation of the images. The original Herlev dataset consists of 917 images. Through the
data augmentation process, the total amount of data increased to 2,751 with each addition
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of data from vertical flipping. Furthermore, the augmented images undergo a process of
image quality enhancement, where the flow of the image quality enhancement process is
shown in Figure 5. It shows that the result of data augmentation is used as an input image
of type BGR. Then, the BGR image is converted to an RGB image. Images of RGB are then
subjected to contrast enhancement using the sharpening filter method. The goal is to make
the nucleus and cytoplasm structures appear clearer and sharper. Furthermore, the image
undergoes an image resize process, changing its size to 256×256 pixels.

Image resize is a technique used to change the pixel size in an image without altering
the important information contained in it. In this research, quantitative image quality mea-
surements are performed by comparing the PSNR and SSIM values between the original
image and the preprocessed image.

Figure 4: Data augmentation using horizontal flipping and vertical flipping.

Figure 5: Flow of the image quality enhancement process.

The measurement results are presented in a comparison graph as shown in Figure 6.
It, shows that the performance evaluation results using the sharpening filter method show
the average PSNR and SSIM values that have approached or reached a number that is
considered good. The PSNR value graph in Figure 6(a) shows the average PSNR value is
42.887. The PSNR value is used to measure the level of noise or distortion in the image
after the preprocessing process. If the value of PSNR is higher, then the noise level in the
enhanced image is lower. Meanwhile, Figure 6(b) shows a graph of the SSIM value with
an average value is 0.908. A high SSIM value indicates good structural similarity between
the enhanced image and the ground truth. Thus, it can be said that the image quality after
enhancement is good.

3.2 Training Data

The training data process was performed using the preprocessed results, totaling 2,751
data, then split into 80 % training data and 20 % testing data. This resulted in approximately
2,200 training data randomly split. Furthermore, this training data was further divided
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Figure 6: Comparison graph of values between the original image and the preprocessed
image: (a) PSNR and (b) SSIM.

using a split percentage of 70 % (1,540) in training data and 30 % (660) in validation data. At
this stage, the modified architecture of U-Net as shown in Figure 3 is used for the training
process. The training process in this research utilizes 30 epochs. The results of the training
process yield the values of accuracy and loss in the training data as well as the values of
val_accuracy and val_loss for the validation data. The graph of results obtained during the
training process with the modified U-Net architecture model is shown in Figure 7.

Figure 7: Graphs obtained during the training process: (a) accuracy and (b) loss.

Figure 7(a) represents the graph of accuracy for training data and validation data using
the modified U-Net architecture. In the training data, the accuracy graph shows an increase
in each epoch. Starting from 14 % in the first epoch, this number continues to increase until
reaching 92 %. The same thing can be observed in the accuracy graph for the validation

https://ejournal.ittelkom-pwt.ac.id/index.php/infotel

https://ejournal.ittelkom-pwt.ac.id/index.php/infotel


A SEMANTIC SEGMENTATION OF NUCLEUS AND CYTOPLASM IN PAP-SMEAR IMAGES · · · 283

data, which also increases with each epoch. Starting from 7 % in the first epoch, this number
continues to increase until it reaches 93 %. Meanwhile, Figure 7(b) represents the graph of
loss for training data and validation data using the modified U-Net architecture. For the
training data, the loss graph shows a decrease at each epoch. In the first epoch, the loss
value is 66 %, then it gradually decreases to near 0 %. Similarly, for the validation data, the
loss graph also shows a decrease in each epoch. In the first epoch, the loss value is 61 %,
then it continues to decrease toward 0 %. Smaller loss values indicate a smaller error rate
in the model’s learning of patterns.

The results of the graphs indicate that the used model does not experience overfitting
and is capable of recognizing and learning patterns in the trained data. Based on Figure 7(a)
and Figure 7(b), the performance of the modified U-Net architecture model is good in nu-
cleus and cytoplasm segmentation, as indicated by an accuracy above 90 % and a loss value
approaching 0 %.

3.3 Testing

The testing process is a step to test the model from the results of the training process using
new data that has never been learned by the model before. The testing data consists of
551 data obtained from split data. At this stage, semantic segmentation predictions are
performed for the nucleus and cytoplasm are performed, and evaluate the accuracy of the
model.

Several comparisons between the original image, segmentation result, and ground truth
are shown in Table 1. It shows the comparison between the segmented image and the
ground truth. The structure of the pap-smear image consists of the nucleus (cell nucleus)
labeled in light blue, the cytoplasm (cells surrounding the nucleus) labeled in dark blue,
and the background labeled in red. Seen in Table 1, the segmentation results performed
using the modified U-Net architecture with Batch Normalization have shown similarity
with the ground truth. However, the segmentation results of the nucleus area are still not
fully predictable. In addition, in some results, there are still points in the background that
are incorrectly predicted as cytoplasm.

The performance evaluation metrics used for semantic segmentation of nucleus and
cytoplasm cells include accuracy, sensitivity, specificity, F1-score, and precision. Accuracy
is used to measure the extent to which the segmentation model can correctly identify be-
tween nucleus and cytoplasm cells in pap-smear images. Sensitivity is used to measure the
ability of the model to correctly identify cancer cells, including both nucleus and cytoplasm
cells. Specificity is used to measure the ability of the model to correctly identify the back-
ground. Precision is used to measure how precise the model is in identifying nucleus and
cytoplasm cells. F1-score is used for the harmonic mean between precision and sensitivity.
A comparison of the obtained semantic segmentation performance evaluation results with
other studies is shown in Table 2.

Table 2 shows the comparison of research results using the same dataset for pap-smear
image segmentation. It is observed that the semantic segmentation method proposed in
this research achieved the highest values in terms of accuracy, F1-score, and specificity
compared to previous studies. Specifically, the accuracy is 91.48 %, F1-score is 81.7 %,
and specificity is 87.7 %. However, another study by [30] obtained the highest precision,
and a study by [31] obtained the highest sensitivity, although these two studies only cal-
culated three evaluation performance values. Compared to other studies, it can be seen
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Table 1: Comparisons of Original Image, Segmentation Result, and Ground Truth

No Pap-smear Dataset
Original Image Segmentation Result Ground Truth

1

2

3

that these studies only measured 2 to 4 evaluation performance metrics. According to the
comparison, it is concluded that the proposed method has provided optimal performance
in semantic segmentation.

4 Discussion

In the process of nucleus and cytoplasm segmentation using the U-Net architecture, each
pixel is grouped into three different classes. Class 0 is used for the cytoplasm label, class
1 for the nucleus label, and class 2 for the background label. A comparison of the perfor-
mance evaluation of each label is shown in Figure 8. This figure shows the performance
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Table 2: Evaluation result comparison
Method Acc (%) F1 (%) Sen (%) Spe (%) Pre (%)
SPFNet [28] - - - - 78.40
Bi-Path CNN [29] 77.00 69.00 72.00 - 60.00
Deep CNN Without Pre-processing [30] - 77.00 70.00 - 90.00
U-Net [31] - 77.00 94.74 75.00 -
Proposed method 91.48 81.70 79.90 87.70 83.70

evaluation results of each label, where it can be seen that class 1 has the highest accuracy
and specificity values compared to other classes. Meanwhile, class 0 obtains higher F1-
score, sensitivity, and precision values compared to the other classes. The performance
evaluation per label indicates that the accuracy obtained for all classes is very good, with
results that are close to the ground truth. The F1-score shows the model’s excellent per-
formance in segmenting the nucleus and cytoplasm. Sensitivity shows that the models
have a high ability to detect nucleus and cytoplasm objects, with higher values than the
background. Specificity shows that the models have a high ability to detect objects other
than the nucleus and background, although the specificity for the cytoplasm is slightly
lower. Precision shows that the model can accurately identify boundaries for the cyto-
plasm, nucleus, and background, thereby reducing errors in classifying adjacent pixels for
each object.

Figure 8: Comparison of performance evaluation results per label.
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5 Conclusion

Based on previous research, the use of modified U-Net architecture for nucleus and cy-
toplasm segmentation has been proven effective in predicting the pixels representing the
nucleus and cytoplasm from the given image data. This research modified the U-Net ar-
chitecture by adding batch normalization in the semantic segmentation process but did not
involve the classification process. Therefore, the future research of this research will focus
on classification for cervical cancer detection based on the segmentation results obtained.
Performance evaluation shows that the modified U-Net architecture has provided good
segmentation results. The problem of network complexity and vanishing gradient during
the training process was successfully overcome by the addition of batch normalization to
the basic U-Net architecture. This led to accurate segmentation predictions based on the
evaluation values obtained.
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