LSTM forecast of volatile national strategic food commodities
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Abstract — Using the long short-term memory (LSTM) forecast, this research suggested a short-term projection model for
national critical food pricing commodities. The model was trained using historical time-series data from each commodity
price over the previous three years. The results demonstrated that the proposed LSTM architecture model was generalizable
to all commodities and performed well in most cases. This result indicates that the model is resilient and can forecast
commodity prices and offer accurate forecasts for most of the ten volatile national strategic foods, with an error value of less
than 0.01 and an accuracy value of > 95 %. The model, however, needed to recognize the pricing pattern in cooking oil and
beef commodities, both of which had increasing trend patterns. Hence, further research is needed to improve the model’s
performance for commodities with volatile prices. This could be done using a more extensive and diverse dataset and a more
extended lookup date. Additionally, differentiating the LSTM architecture for commodities with different data distribution
characteristics may be helpful. Finally, training the data with more epochs may also improve model performance. As the
implications of this study, policymakers and stakeholders can use this predictive model to make better decisions about food
prices and inflation, which can significantly impact food security and economic stability. For example, policymakers can use
the model to set price floors and ceilings for essential food items, develop targeted subsidies for low-income households, and
make better production and inventory planning decisions.
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more difficult. Before 2008, according to the United
Nations Food and Agricultural Organization (FAO),
food prices rarely experienced significant volatility

I. INTRODUCTION

Analyzing how agricultural commodity prices and

volatility behave is vital since they considerably impact
trade terms, inflation expectations, government budget
balance, development prospects, and external debt
[1]. Several of them, however, are national strate-
gic food commodities whose prices are affected by
various factors, including adverse weather events [2],
market speculation [3], national policies [4], and the
coronavirus pandemic [5]. Meanwhile, as institutional
investors grow their stakes in commodity markets [6],
the agricultural market is becoming more financialized,
which could destabilize agricultural commodity prices.

As a result, agricultural commodity futures prices are
exceedingly complicated, nonlinear, and erratic, making
precision forecasting difficult. Consequently, agricul-
tural commodity futures prices are highly complex,
nonlinear, and confused, making precise forecasting

[7]. Agricultural commodities, on the other hand, have
undergone massive price changes during 2008-2018,
resulting in both high and low volatility regimes [8].
The G20 requested a report from several international or-
ganizations (including the World Bank, IMF, UNCTAD,
OECD, and FAO, among others) to “develop options for
G20 consideration on how to better mitigate and manage
the risks associated with food and other agricultural
commodity price volatility, without distorting market
behavior.” [9].

Numerous forecasting techniques have been devised
in previous research to improve prediction accuracy.
Various techniques are utilized to forecast the prices
of various commodities and stocks. The proposed
methods are often classified into three categories.
The first group includes classic statistical methods,



followed by an artificial intelligence-based approach and
hybrid methods [10]-[12]. Traditional econometric and
statistical procedures, such as smoothing (ETS), benefit
from their concise methodology [13], in addition to
the autoregressive integrated moving average (ARIMA)
[14], which are the most commonly utilized strategies
for forecasting commodity prices. These approaches,
however, are inadequate at capturing the nonlinear
component of future price series since they are based
on the assumption of approximation linearity. Machine
learning (ML) approaches, classified as artificial in-
telligence (AI) approaches, have powerful data-driven
features and adaptive learning capabilities that allow
them to extract latent factors that traditional methods
cannot capture successfully.

Back-propagation neural networks (BPNN) are neu-
ral networks that learn by doing [15]-[18], and popular
machine learning algorithms for commodity price
forecasting include extreme learning machines (ELM)
[19], [20]. Among other shortcomings, ML approaches
are sensitive to parameter values and prone to over-
fitting. No forecasting method is superior to all others;
each technique has merits and weaknesses [21].

It is imperative to develop the frameworks necessary
to accurately forecast agricultural commodity price
volatility given the aforementioned market dynamics
and recent agricultural volatility research so that policy
institutions can design preventative policies or prepare
for periods of high price volatility, as suggested by [22].
Policy institutions have recently demonstrated the need
for precise agricultural price volatility forecasts. How-
ever, agricultural price volatility modeling techniques
have been developed for over 15 years, and [23] were
the first to attempt to produce actual out-of-sample
forecasts.

The research [23] begins by focusing on the first of
this research and uses GARCH-type models to create
estimates for the price volatility of cocoa, coffee, and
sugar. Some research [24]-[27] take advantage of the
increased availability of ultra-high-frequency data to
extend Corsi’s [28] heterogeneous autoregressive (HAR)
model to create short-run volatility forecasts (up to 20
days ahead). The research [25] estimated the realized
volatility of five agricultural commodities sold on the
Chinese market using two regime-switching Markov
models: soybeans, soybean oil, white sugar, gluten
wheat, and cotton. They find evidence that regime-
switching dynamics outperform a simple AR(1) model
and a Markov-switching AR(1) model in terms of
predictive value.

In a similar manner to research [26], [27] fore-casted
soybean, cotton, gluten wheat, and maize prices using
intra-day data from the Chinese commodity futures
markets (Zhengzhou commodity exchange and Dalian
commodity exchange). The HAR model is extended
in this study with potential predictors (such as day-of-

week dummies, historical cumulative returns, and the
leap component). According to their research, principal
component and tagging-based HAR models can produce
better forecasts than AR models alone.

The research [28] developed and fore-casted volatil-
ity measures using Chinese market futures prices for
soybean, cotton, gluten wheat, maize, early Indica
rice, and palm. They also employ additional calculated
volatility measures (such as daily log-range volatility,
real threshold multi-power variation, and real threshold
bi-power variation) as possible predictors of observed
volatility and the jump component. Predictors and
coefficients in their prediction models can change
over time. In terms of predictive ability, according
to their findings, the dynamic model average and the
Bayesian model average outperform the basic HAR
model. Furthermore, they demonstrate that the HAR
model with time-varying sparsity for all commodities
evaluated generates the most accurate forecasts.

Given the lack of research on agricultural price
volatility forecasting and the significance of such projec-
tions, this area of inquiry warrants additional attention.
Furthermore, there hasn’t been much research into
forecasting agricultural commodity volatility using Al-
based machine learning or deep learning models. The
previous recent studies also did not consider Indonesia’s
national strategic food commodities. Hence, the study
aims to implement one of the recurrent neural network-
based forecasting techniques, Long Short-Term Memory
(LSTM), to model and test the evaluation of forecasting
results carried out for ten national food commodity
products in Indonesia that are said to influence inflation
projection, which are: rice, red pepper, cayenne pepper,
onion, garlic, chicken, beef, cooking oil, and eggs.

This research will construct an LSTM model archi-
tecture for price forecasting and analysis of ten national
food commodity products in the Yogyakarta area. Data
from the previous three years is taken from open data
sources on the Central Bank of Indonesia website to
train the model. The models are then assessed based
on their ability to create forecasts, indicating their trust-
worthiness. To present the findings of this study, this
paper is organized as follows: The proposed research
technique, the assumptions, needs, and limitations of
this study are all addressed in Section II. The result
section briefly reviews the LSTM model used to forecast
national food commodity products. Section I'V discusses
and analyzes the Predicted vs. Actual Results of the
LSTM model, and the last section summarizes these
research findings.

II. RESEARCH METHOD

This section discusses the assumptions, needs, and
limitations; businees objectives; and analysis approach.



Fig. 1. The CRISP-DM methodology [29].

A. Assumptions, Needs, and Limitations

Price changes in uncontrolled critical commodities
might result in losses for consumers and producers.
Making accurate price estimates is one step toward
addressing these challenges and implementing pre-
ventive actions to limit price volatility. In this study,
the prices of ten essential national strategic food
commodities—rice, purebred chicken meat, purebred
chicken eggs, beef, onion, garlic, red chili, cayenne
pepper, cooking oil, and sugar—will be predicted using
long short-term memory (LSTM). Data is obtained from
direct survey results from markets in each city/district
that have been published by the Central Bank of
Indonesia (https://www.bi.go.id/hargapangan).

The outcome of this research is the implementation
of an LSTM model architecture for price forecasting and
analysis of ten food commodities in the Yogyakarta area.
The models are then assessed based on their propensity
to produce forecasts, which summarizes how reliable
each model is. The model is trained using historical
commodity price data from the 26th August,2021 to
the 26th August, 2023.

B. Business Objectives

This research is being carried out in to create a short-
term market projection model for strategic food pricing
commodities in the Yogyakarta region, using time-series
forecasting of ten food commodities, which significantly
contributes to the formation of inflation, particularly
volatile food inflation. The expected outcome is the
creation of a short-term price projection tool for staple
food commodities that can be used regularly basis by
the Regional Inflation Control Team or other relevant
stakeholders in developing policy recommendations
and/or short-term programs or market inspections to
support market performance improvement, particularly
for staple food commodities with the following details:

1) Rice: This commodity’s data includes six va-
rieties of rice quality based on price level:
two types of regular/lower quality rice, two

types of medium quality rice, and two types
of premium quality rice. Rice kinds were chosen
based on the type most often consumed by the
community in the city/district of the sample
location. Rason/rastra rice is not included in
the price of ordinary / lesser quality rice. The
price stated is the price per kilogram. The price
utilized for subsequent analysis is the average of
all available pricing data.

2) Onion: This commodity’s data consists of only
one quality of onion, which is local and of
mediocre quality. The price stated is the price
per kilogram.

3) Garlic: This commodity’s data consists of only
one quality garlic in medium-quality weevil. The
price stated is the price per kilogram.

4) Red chili: This commodity’s data consists of
large redand fresh-curly red chili. The price stated
is the price per kilogram. The price utilized for
subsequent analysis is the average of all available
pricing data. The price utilized for subsequent
analysis is the average of all available pricing
data.

5) Cayenne pepper: This commodity’s data consists
of two qualities: red cayenne pepper and green
cayenne pepper in fresh condition. The price
stated is the price per kilogram. The price utilized
for subsequent analysis is the average of all
available pricing data.

6) Beef: This commodity’s data consists of two
qualities: beef is fresh on the exterior and inside.
The price stated is the price per kilogram. The
price utilized for subsequent analysis is the
average of all available pricing data.

7) Purebred chicken meat (chicken): This commod-
ity’s data only includes one quality, purebred
chicken meat without offal in fresh condition.
The price stated is the price per kilogram.

8) Purebred chicken eggs (eggs): This commodity’s
data only includes one quality, fresh chicken egg.
The price stated is the price per kilogram.

9) Granulated sugar (sugar): This commodity’s data
is divided into local/bulk quality yellow color
and premium quality. The price stated is the price
per kilogram. The price for subsequent analysis
is the average of all available pricing data.
Cooking oil: This commodity’s data consists of
three qualities: one local/bulk quality and two
refill packaging qualities. The price stated is the
price per liter. The price utilized for subsequent
analysis is the average of all available pricing
data.

10)

C. Analytic Approach

This research adopts a Data Science analysis model
using the CRISP-DM [29]. As seen in Fig. 1, for
the second stage, data understanding, data will be
acquired from open data sources on the Central Bank



of Indonesia website. The obtained data consists of
only two attributes: the time-frame and price. Then,
several sets of preprocessing steps will be carried out:
adjusting the data format to the needs of analysis, filling
in the null data (imputation), and carrying out the initial
stages of descriptive statistics and visualization.

The LSTM Model is the solution or model that
will be used to anticipate food prices based on the ten
commodities chosen. Because LSTM models demand
huge amounts of data, data availability in the last
three years will be assessed as part of the evaluation
process to achieve the best results. When food price
prediction models yield the smallest error value, they
are successful. This signifies that the model has a
tiny difference between predicted and actual values.
The evaluation matrix that will be used to assess
the effectiveness of the built model will solely use
mean absolute error (MAE) and accuracy by comparing
predicted results to actual prices.

III. RESULT

The dataset that has been imported is a CSV file
of 1097 rows of data from ten commodities over the
last three years. Before the data understanding process
is carried out, preprocessing of these files is carried
out to combine price data of a type of item every day
(according to the date of the Excel file). The ultimate
goal of this preprocessing is a data frame that represents
the dataset with index is the date with the data type of
Datetimelndex, and other columns labeled as item code
of type int64 represented by commodities (i.e., chicken,
onion, garlic, rice, red pepper, cayenne pepper, cooking
oil, beef, and egg), with subscripts from 1 to 9. The
dataset is ready to be processed for data understanding,
statistically or visually.

A. Data Understanding

Because the dataset only consists of two features,
Date and Price, only feature understanding is car-
ried out at this stage. Feature understanding includes
understanding the feature’s content and conducting
simple statistical analysis by looking at data distribution
through data visualization and checking data correlation.
Through correlation analysis, some features have a
strong correlation (close to 1, which is 0.876320); there
is also a negative correlation between chicken and garlic
with a correlation result is -0.162568.

B. Data Preparation

The first data preparation process is normalization
by imputing empty or null data. After data has been
collected on ten national strategic food commodities:
Chicken, Onion, Garlic, Rice, Red Chili, Cayenne
Pepper, Sugar, Cooking Oil, Beef, and Eggs, on average,
there is one to three blank data (missing value) in each
commodity. To fill in null values, the Forward Fill
method is selected. Applying this method across data
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Fig. 2. The LSTM model architecture.

frame indexes will fill in any missing values based on
the corresponding value in the previous row.

The second normalization carried out is data nor-
malization with the Min-Max Scaling technique. This
normalization is needed because in the data understand-
ing stage, through the visualization of the data carried
out, there are several data points whose price differences
are very far above the average.

C. Modeling

LSTM architectures for all commodities are given in
Fig. 2. The LSTM model utilized for all commodities
has a 4-layer input architecture (100 units each), dropout
parameters 0.2 batch=12, and output=1. Furthermore,
the LSTM employed here employs an Adam optimizer
and a 100-epoch iteration. After multiple tests with
values of 10, 30, 50, and 100 and obtaining more small
loss outcomes with units of 100, the number of units
of 100 was chosen. The same tests are conducted for
dropout values. When tested with a value of 0.5, the
accuracy is lower than when tested with a value of 0.2.
We had previously also attempted a batch size of 32,
but better results were obtained when the batch size
was 12. We also tried varying the epoch value from 10,
50, and 100, the lowest MSE result is obtained with
an epoch of 100 due to the more repetitions.

D. Evaluation

As an evaluation, in addition to visualizing the results
as given in Fig. 3. At each epoch, the mean-squared
error (MSE) is calculated, which results are shown in
the evaluation table in Table 1 below with epoch around
100 per batch.

IV. DISCUSSION

The prediction given here requires a look_up_date or
consideration date, which means if we want to predict
prices on January 21, 2021, then the LSTM model
built will consider the last 14 days of data (January
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Fig. 3. Predicted vs. Actual evaluation results : (a) Chicken meat, (b) Onion, (c) Garlic, (d) Rice, (e) Red chili, (f) Cayenne pepper, (g)

Sugar, (h) Cooking oil, (i) Beef, (j) Eggs.

Table 1. Average MSE Evaluation Results

No Commodities Average MSE
1 Chicken Meat 0.0025
2 Onion 0.0015
3 Garlic 0.0009
4 Rice 0.0021
5 Red Chili 0.0021
6 Cayenne Pepper 0.0017
7 Sugar 0.0017
8 Cooking Oil 0.0014
9 Beef 0.0015

10 Eggs 0.0013

7, 2021 —January 20, 2021) as a consideration s The

average

MSE value from the modeling results is less than
0.01 The model built has provided predictions with
an error value of < 0.01. Using testing data for
LSTM models built, we also analyze the accuracy
of predictions by comparing prediction results with
actual prices published on the same website. The
resulting accuracy value is > 95%, which means that

the difference between the price difference between
the actual price and the predicted price given by the
LSTM model provides a difference that is not too far
apart. However, in some cases, because several external
factors sometimes affect price spikes that may be very
high, prediction results will be obtained that become
significantly less accurate because the input from this
model requires the last 14 days of data as consideration.
The value of 14 may be replaced, for example, the last
30/60/360, to produce better prediction performance.

The results of accuracy evaluation with testing data
as much as 20% of the overall dataset (1097 data) are
given in Table 2. Accuracy here serves as additional
evidence that the model implemented can be general
to all commodities and has good performance with an
accuracy value of more than 95%. In addition, looking
further from Fig. 3, one LSTM model can produce
actual vs. predicted results that are pretty good in most
commodities. Of the ten commodities evaluated, 7 have
a difference in actual vs. predicted value that is not



too far. However, the model needs to performs poorly
in cooking oil and Beef commodities. In Cooking Oil,
which has data with an increasing trend pattern, the
LSTM model shows very different performance.

Table 2. Accuracy Evaluation Results

No Commodities Accuracy
1 Chicken Meat 99.56 %
2 Onion 99.01 %
3 Garlic 99.66 %
4 Rice 99.84 %
5 Red Chili 96.91 %
6 Cayenne Pepper 96.72 %
7 Sugar 97.16 %
8 Cooking Oil 96.48 %
9 Beef 97.94 %
10 Eggs 99.65 %

Meanwhile, in Beef commodities, patterns have
been successfully identified by the LSTM model,
but the resulting prediction results still need to be
improved. Unlike the previous two commodities, pattern
recognition by LSTM on Rice commodities is also not
optimal. Fluctuations in data values that show multiple
spikes also need to be adequately identified by this
model.

V. CONCLUSION

The size and quality of the dataset limited the
study. A more extensive and more diverse dataset
would allow the model to learn more patterns and
make more accurate predictions. Moreover, The study
was also limited by the period used. The model could
perform differently if trained and tested on data from
a different period. Overall, the results of this study
are promising. The LSTM model was able to provide
accurate predictions for most commodities.

The LSTM model built in this study provided
predictions with an error value of < 0.01 and an
accuracy value of > 95%. The model architecture could
generalize to all commodities and performed well in
most cases. However, it performed poorly in cooking oil
and beef commodities, which have data with increasing
trend patterns. However, of the ten commodities, these
two do exhibit volatility that is challenging to predict,
according to the findings of additional discussions with
several experts. It is speculatively believed that this is
caused by outside forces, such as price regulation by a
particular group over a particular period. This incident
might not be preventable, but in the future, variables
could be added for more in-depth analysis, including
taking into account news reports, particularly regarding
these two commodities, to improve the accuracy of
price forecasts.

Furthermore, future research might use a larger, more
varied dataset and a longer look_up_date for the model.
Additionally, as cooking oil and beef have different data
distribution characteristics from the other commodities,
differentiating the LSTM architecture for these two

commodities may be considered. Training the data with
more epochs may also improve model performance.

Overall, the study’s findings are promising and
suggest that LSTM forecast can be used to develop a
more accurate and reliable food price prediction model.
Policymakers and stakeholders can use this predictive
model to make better food prices and inflation, which
can significantly impact food security and economic
stability. Here are some specific examples of the use
of the model:

1) Policymakers can use the model to set price
floors and ceilings for these ten essential food
items. This can help protect consumers from
price spikes and ensure they have access to
affordable food.

2) Policymakers can also use the model to develop
targeted subsidies for low-income households.
This can help to offset the impact of food price
increases on the poorest members of society.

3) Stakeholders in the food supply chain, such
as farmers and retailers, can use the model to
make better production and inventory planning
decisions. This can help reduce food waste and
ensure a sufficient food supply to meet demand.
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