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Abstract: Diabetes mellitus is distinguished by an inability of the human system to produce
insulin on an ongoing basis, as well as by the inefficient utilization of the insulin hormone,
resulting in an elevated level of blood glucose. Global diabetes rates have nearly doubled
since 1980, reaching 9.3% among adults. Alarmingly, of the 463 million individuals with
diabetes, 50.1% are unaware of their condition. Indonesia ranks seventh globally with 10.7
million diabetes cases. In 2019, it was fifth globally for adults (20–79 years) with undiag-
nosed diabetes. This silent epidemic demands urgent attention and comprehensive strate-
gies for early detection and management. In recent years, researchers have increasingly
studied machine learning for early diabetes recognition. In this study, we aim to predict
early-stage diabetes risk by utilizing 16 health condition features. We explore 12 distinct
machine learning algorithms, applying a hyperparameter grid to tune each algorithm. This
involves systematically testing combinations of hyperparameters to identify the optimal
settings for achieving the most accurate and reliable predictive models. The results indi-
cate that the LightGBM algorithm achieved the highest accuracy of 0.9692. By contrast, the
logistic regression and naïve Bayes algorithms demonstrated the lowest performance, each
with an accuracy of 0.8923. The implications of these results underline the capability of
employing machine learning algorithms to precisely and effectively detect individuals sus-
ceptible to diabetes, enabling the implementation of individualized healthcare approaches.

Keywords: diabetes mellitus, LightGBM, logistic regression, machine learning, naïve
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1 Introduction

As per the International Diabetes Federation (IDF) definition, diabetes mellitus is charac-
terized by a deficiency in long-term insulin production within the body, also marked by
the ineffective utilization of the insulin hormone, leading to an elevation in blood glu-
cose levels [1]. Diabetes mellitus represents a significant public health concern, impacting
approximately 424.9 million individuals globally, one-third of those affected are aged 65
years or older [2]. By 2035, the larger Asia Pacific Region expects a 30–40% increase in dia-
betes prevalence [3]. The alarming surge in diabetes prevalence on a global scale reveals a
stark reality, since 1980, the rates have almost doubled, soaring from 4.7% to 9.3% among
adults [4]. Shockingly, within the staggering count of 463 million individuals grappling
with diabetes, an unsettling 50.1% remain oblivious to their condition [5]. Indonesia takes
the seventh spot in the global ranking, bearing the weight of 10.7 million cases of diabetes
mellitus [6]. If not properly managed, diabetes can lead to various complications affecting
different organs, potentially contributing to morbidity and mortality. This stark figure em-
phasizes the urgent need for strategic healthcare efforts and comprehensive measures to
tackle the escalating diabetes’s prevalence.

Machine learning, allows machines to access and learn from data automatically [7]. Sev-
eral prior researchers have undertaken diabetes detection utilizing image inputs. Harahap
developed a system for classifying foot ulcers in diabetic patients using convolutional neu-
ral network (CNN) [8]. Study [9], digital pathology and machine learning models were
utilized to analyze human pancreata images. Aslan and Sabanci [10] transform numeri-
cal data into images, emphasizing feature importance to improve CNN models for early
diabetes diagnosis. The result demonstrates the images’ robustness in early diabetes di-
agnosis. The study [11] introduces a CNN to predict diabetes based on retinal images,
to classify into diabetic or nondiabetic classes. In both studies [12] and [13], there were
investigations into the early detection of diabetes with panoramic tongue imaging.

Diabetes prediction models can indeed be developed using raw data that includes vari-
ous features related to health conditions, lifestyle, age, and more. Figure 1 shown a general
representation of data collection for diabetes prediction [14]. Using raw data for diabetes
prediction has the advantage of incorporating a holistic view of an individual’s health and
lifestyle, and it may reduce computational complexity.

Febrian conducted research employing the k-nearest neighbors (KNN) and naïve Bayes
algorithms for predicting diabetes based on various health attributes [15]. In addition to
health attributes, lifestyle factors can also serve as features for the prediction process, as
research conducted by Mujumdar and Vaidehi [16]. Tasin et al. [17] predicted diabetes
by utilizing multiple features including glucose levels, insulin, age, blood pressure, and
body mass index (BMI), then the XGBclassifier exhibited the most optimal performance,
with accuracy of 81%. Qin et al. [18] conducted a comparative analysis of five distinct
machine-learning for predicting diabetes. The researchers utilized lifestyle statistics ob-
tained from NHANES database. Ahmed and Li [19] introduced a diabetes predictive model
for enhanced categorization, incorporating external variables influencing diabetes. Ganie
et al. [20] experimented with five boosting model with PIMA dataset to predict diabetes.
Gradient boosting achieving an impressive accuracy rate of 92.85%. Employing the Smote-
Tomek Link and random forest algorithms, study [21] deals with the issue of dataset imbal-
ance. Eight attributes were used as inputs in this study, and one trait was used as output.
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Figure 1: Data recording process for the diabetes predictions.

The review suggests that machine learning holds potential in forecasting diabetes at
an early stage. It also noted the importance of incorporating raw data to gain a thorough
understanding of an individual’s health and lifestyle, while also streamlining computa-
tional complexity. Therefore, the study systematically investigates and compares the per-
formance of twelve distinct machine learning algorithms for the early-stage prediction of
diabetes risk, utilizing a dataset comprising sixteen health condition features. This study
aims to identify the most accurate and reliable predictive models among the tested algo-
rithms, with a focus on optimizing hyperparameters through a rigorous hyperparameter
grid search. By achieving a comprehensive understanding of the strengths and limitations
of each algorithm in predicting early-stage diabetes risk, this research seeks to contribute
to the development of effective and individualized healthcare strategies for diabetes pre-
vention and management.

2 Research Method

The objective of this study was conduct a comprehensive evaluation of twelve machine
learning models in forecasting the risk of diabetes in individuals. For each algorithm, we
employed a hyperparameter grid—a structured approach defining potential values for tun-
ing during the hyperparameter optimization process. This tuning process carefully try out
different conditions of hyperparameter to find the best machine learning model. Figure 2
delivers a detailed overview of the research approach.
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Figure 2: Research methodology for diabetes prediction.

2.1 Dataset

This study utilizes public data accessible on Kaggle [22]. The set of data consists of vital
sign and symptom information pertaining to those who are at risk of getting diabetes or
who exhibit early symptoms of the disease. Table 1 offers a detailed description of the at-
tributes presented in the dataset. The dataset comprises information from 520 individuals,
with 320 identified as positive for diabetes and the remaining as negative.

The selection of health condition features for diabetes risk prediction is crucial. each
feature should have a strong rationale backed by either statistical analysis or relevant liter-
ature demonstrating its association with diabetes. Age is a well-established risk factor for
diabetes. As individuals age, the risk of insulin resistance and impaired glucose tolerance
increases [23, 24]. Gender differences exist in the prevalence and risk factors of diabetes.
For instance, women with a history of gestational diabetes are at higher risk of developing
type 2 diabetes later in life. Additionally, hormonal differences between males and females
can influence insulin sensitivity and glucose metabolism [25–27].

Excessive urination is a classic symptom of diabetes, particularly when blood sugar
levels are elevated. It occurs due to the kidneys attempting to remove excess glucose from
the blood by excreting it in urine. Polyuria is a hallmark feature of diabetes and is strongly
associated with the condition [28]. Polydipsia, intense thirst is closely linked with polyuria
in diabetes. When individuals experience excessive urination, they become dehydrated,
leading to increased thirst as the body attempts to compensate for fluid loss [29].

Unexplained weight loss can be an early sign of diabetes [30], it occurs due to the body’s
inability to properly utilize glucose for energy, leading to the breakdown of fat and muscle
tissue for fuel. General weakness or fatigue, polyphagia, visual blurring, , muscle stiffness
, irritability, delayed healing, partial paresis, genital thrush, alopecia, obesity, and itching
are nonspecific symptom that can occur in individuals with diabetes [31, 32]. Each of these
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Table 1: Dataset attributes for early-stage diabetes risk prediction
Attributes Annotation
Age Age distribution of the respondents (range at 16 – 65)
Sex Gender of the participants (female or male)
Polyuria Presence of excessive urination (yes or no)
Polydipsia Intense thirst (yes or no)
Sudden Weight Loss Significant weight decline (yes or no)
Weakness Weakness in general (yes or no)
Polyphagia Excessive hunger (yes or no)
Genital Thrush Existence of Genital Thrush: Indicates whether there is the presence of

fungal infection in the genital area (yes or no)
Visual Blurring Refers to vision impairment or haziness (yes or no)
Itching Indicates the presence of skin irritation or scratching (yes or no)
Irritability Refers to the manifestation of irritability (yes or no)
Delayed Healing Indicates a slower-than-normal healing process of wounds (yes or no)
Partial Paresis Refers to a condition where there is a partial reduction in voluntary mo-

tor control (yes or no)
Muscle Stiffness Indicates the existence of stiffness or inflexibility in muscles (yes or no)
Alopecia Refers to the occurrence of hair loss or thinning of hair (yes or no)
Obesity Indicates the presence of excess body weight or obesity (yes or no)
Class The diabetes classification (Negative or Positive)

features contributes to the overall risk profile for diabetes and has been selected based on
its documented association with the condition.

2.2 Machine Learning Method

Machine learning (ML) is a broad term encompassing a variety of algorithms that can make
smart predictions using a set of data, allow machines to acquire knowledge without pro-
gramming, and provide automatic data access and improved experience as the machine
learns [7], [33, 34]. In healthcare industry, explainable machine learning models empower
healthcare professionals to make informed, data-driven decisions, enabling personalized
interventions and contributing to an enhanced quality of healthcare services [35].

A decision tree is a step-by-step process for determining the result of a function, de-
noted as f(x). It involves conducting tests on the given input of x, outcome for each test
guides sequentially until the function f(x) is accurately determined [36]. A Decision tree
simplifies decision-making by breaking down complex choices into simpler steps, offering
more solutions to problems efficiently. It also uncovers relationships between input and
target variables, making it effective for decision-making [37].

Logistic regression is a predictive model designed to assess the association between
a categorical dependent variable (target), typically with nominal or ordinal scale, and an
independent variable (predictor) that is categorical with interval or ratio scale [38]. Lo-
gistic regression is a widely employed statistical technique that facilitates the multivariate
investigation of a binary dependent variable [39].

The extra tree, or extremely randomized tree, is an ensemble technique based on trees
used in both supervised classification and regression scenarios. By employing random-
ization in the selection of cut-points for numerical input features, the goal is to have the
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optimal cut-point account for a significant portion of the induced tree’s variance [39]. In
order to construct a robust model, both random forest and extra trees employ multiple
decision trees; their primary distinction is in their feature selection methods [40].

In random forest, the best features randomly picked for each decision point. Mean-
while, extra trees use random features and random values for each decision point. The
KNN algorithm is predominantly utilized for classification tasks, the concept is predicated
on a parameter k that is variable and signifies the amount of ’nearest neighbors’ [41]. The
KNN works by determining the adjacent or neighboring points or neighbors from a train-
ing input in response to a specified data. This is done by finding the nearest distances to
the data point. Once we identify the k nearest data points, we figure out the most common
class by using a majority voting rule.

The core concept of support vector machines (SVM) revolves around decision functions
hyperplanes, that adeptly differentiate between positive and negative data by maximizing
the margins [42]. This optimization process tries to make a big gap between the nearest
positive example and the hyperplane and make a big gap between the nearest negative
example and the hyperplane. Naïve Bayes uses a simple probability-based classification
using Bayes’ theorem, assumes that whether a specific feature is there or not in a class is
unrelated to the presence or absence of any other feature [43].

LightGBM is a current adaptation of the gradient boosting algorithm that enhances its
capacity for scaling without compromising the algorithm’s inherent effectiveness [44]. Op-
erating in the feed-forward direction, the multi-layer perceptron (MLP) is an artificial neu-
ral network comprised of a minimum of three node layers: input, hidden, and output [45].
To facilitate training proses, MLP utilizes the supervised learning technique known as back-
propagation.

Adaptive Boosting (AdaBoost) is an iterative algorithm in which a feeble classifier is
modified in every iteration till the classification error rate achieves a predetermined level
of minimization [46]. If the classifier accurately classifies, there should be a concurrent re-
duction in both the sample’s weight and the probability of its selection. A prevalent classi-
fication technique, quadratic discriminant analysis (QDA) and linear discriminant analysis
(LDA) both seek to distinguish data points by locating straight lines (in LDA) or curved
surfaces (in QDA) [47]. LDA is simple and robust against increasing dimensionality, but
its effectiveness relies on the assumption of equal covariances. On the other hand, QDA
allows for different data variabilities but comes with a higher flexibility cost as it estimates
more parameters, demanding a larger sample size.

2.3 Performance Parameters

To assess the efficacy of classification models, various performance metrics are employed,
including accuracy, precision, recall, and F1-score. The overall correctness is measured by
accuracy, which computes the ratio of true predictions to the total number of instances.
Precision evaluates the capacity of the model to accurately detect positive instances. The
recall function computes the capacity of the model to capture every positive instance. To
achieve an equilibrium between recall and precision, the F1-score is computed using the
harmonic mean of the metrics. These metrics aid in the assessment and comprehension of
the performance of a classification model across various dimensions.
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3 Results

In this section, exhaustive yet succinct study results for the twelve employed algorithms are
presented. As delineated in the preceding section, this investigation employs a grid search
parameter that autonomously seeks the optimal hyperparameter combination from a set
of multiple hyperparameters. Explanation of the grid hyperparameters assigned to each
algorithm is provided in Table 2. The table outlines the hyperparameter grid combinations
employed for fine-tuning each machine learning predictor in the analysis.

Table 2: Hyperparameter grid combination for each predictor
Predictor Hyperparameter Grid Combination
Decision Tree Criterion (gini or entropy), Splitter (best or random), max_depth

(10,20,30), min_samples_split (2,5,10), and min_samples_leaf (2 or 4)
Logistic Regression Penalty (l1 or l2), C value (0.001, 0.01, 0.1, 1, 10, 100), solver (liblinear or

saga)
Extra Tree n_estimators (50, 100, 150), max_depth (None, 10, 20),

min_samples_split (2, 5, 10), and min_samples_leaf (1, 2, 4)
Random Forest n_estimators (100, 200, 300), criterion (gini, entropy), max_depth (10, 20,

30), min_samples_split (2, 5, 10), min_samples_leaf (2, 4), max_features
(sqrt, log2)

K-Nearest Neighbor k value (range from 1 - 21), Distance (Manhattan or Euclidean)
Support Vector Machine Regularization parameter (0.1, 1, 10, 100), kernel (linear, rbf, poly),

gamma (scale, auto, 0.1, 1), degree (2, 3, 4)
LightGBM num_leaves (31, 63, 127), learning_rate (0.05, 0.1, 0.2), n_estimators (50,

100, 200), subsample (0.8, 0.9, 1.0), colsample_bytree (0.8, 0.9, 1.0)
Multi-Layer Perceptron Size of Hidden Layer ((50,), (100,), (50, 50)), activation (relu, tanh, lo-

gistic), solver/ optimizer (adam, sgd), alpha (0.0001, 0.001, 0.01), learn-
ing_rate (constant, invscaling, adaptive)

AdaBoost n_estimators (50, 100, 200), learning_rate (0.05, 0.1, 0.2)

For decision tree, parameters criterion refers to the metric used to measure the quality
of a split at each node of the tree. The two commonly used criteria are gini impurity and
entropy. The splitter decides how the tree makes splits at each step. When set to ’best,’
it looks at all features and picks the one that gives the most information gain. When set
to ’random,’ it randomly picks a group of features and chooses the best split from that
group. The ’max_depth’ setting determines how deep the decision tree can go. A deeper
tree can understand more intricate patterns in the training data, but it might also lead to
overfitting. The ’min_samples_split’ decides smallest samples needed to split a node, and
’min_samples_leaf’ sets the minimum samples required in a leaf node. For logistic regres-
sion explores hyperparameters such as penalty, C value, and solver type. The ‘penalty’
determines the type of regularization applied to the model.

Regularization is a method employed to avoid overfitting by including a penalty term
in the loss function. The ‘C’ hyperparameter is the inverse of the regularization strength.
Smaller values of C lead to stronger regularization, encouraging simpler models with
smaller coefficients. The ’solver’ selects the optimization algorithm during the training
of the logistic regression model. Liblinear is suitable for smaller to medium-sized datasets,
while ’saga’ is a good option for larger datasets. While Extra Trees and Random Forests are
both tree-based ensemble methods and share some similarities, they do have differences in
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how they introduce randomness during the training process. The KNN algorithm involves
two key hyperparameters, k represents the number of nearest neighbors. Picking the cor-
rect value is essential. A small k may make the model sensitive to noise, while a large k
might result in oversmoothing and the loss of crucial patterns in the data. The distance
metric is crucial in determining how we measure the space between data points. Man-
hattan distance calculates the sum of absolute differences in coordinates, while Euclidean
distance measures the straight-line distance between two points.

SVM algorithm involves several hyperparameters that play a crucial role in shaping the
model. The regularization parameter, C, determines how much emphasis is given to reduc-
ing both training and testing errors in a balanced manner. A smaller encourages a simpler
decision boundary, while a larger allows for a more complex decision boundary that may
fit the training data more closely. SVMs have the capability to employ various kernel func-
tions to transform input data into a higher-dimensional space. Linear kernel suitable for
linearly separable data., radial basis function (RBF) suitable for non-linear data, commonly
used when the decision boundary is complex and not easily linear, and polynomial for
polynomial decision boundaries. Gamma determines the reach or influence of a single
training example in a model. A low gamma means a far reach, and a high gamma means a
narrow reach. The degree is specific to the polynomial kernel and represents the degree of
the polynomial used to find the decision boundary. Higher degrees allow the model to fit
more complex curves.

LightGBM designed for distributed and efficient training. The ’num_leaves’ parameter
decides the most leaves a tree can have. A higher value lets the model understand more
complicated patterns but could result in overfitting. The learning rate decides how much
each tree contributes to the final prediction. A lower learning rate needs more trees for the
model to come together, but it often leads to better generalization. N_estimators refer to
number of boosting rounds or trees to be built. Adding more trees can improve the accu-
racy of the model, but it also demands more computational resources. Subsample controls
the fraction of samples used for training each tree. The MLP is a form of artificial neural
network that includes several layers of neurons. Hidden_layer_sizes indicate the quantity
of neurons in each hidden layer. The activation function determines the output of each
neuron in the network. The solver used to update the weights during training process,
two common choices are stochastic gradient descent (SGD) and adaptive moment estima-
tion (Adam). Alpha represents the L2 regularization term. The crucial hyperparameter for
AdaBoost, an ensemble learning method that combines predictions from multiple weak
learners (usually decision trees) to form a strong learner, is n_estimators, defines the count
of weak learners (base models) to be trained.

The F1-score, accuracy, precision, and recall for each predictor algorithm are detailed in
Table 3. The findings of the present study line up with what has been demonstrated in prior
investigations, machine learning algorithms still an accurate early prediction of diabetes
based on large dataset, in this case 12 attributes of health problems and lifestyle. In this
study, LightGBM outperformed other algorithms. LightGBM is known for its efficiency in
handling large datasets due to its gradient-based approach and leaf-wise tree growth strat-
egy. Our dataset have contained a large number of features or instances, making LightGBM
a suitable choice for efficient computation and modeling. The dataset exhibited class im-
balance, with one class (negative cases of diabetes) being significantly less frequent than
the other.
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LightGBM’s ability to handle imbalanced data through techniques like gradient-based
learning and bagging may have contributed to its superior performance. Diabetes risk pre-
diction often involves complex, non-linear relationships between predictor variables and
the target outcome. LightGBM’s capability to model non-linear relationships efficiently, es-
pecially with high-dimensional data, might have provided it with an advantage over other
algorithms like logistic regression or decision trees. In conclusion, LightGBM’s efficiency
in handling large datasets, robustness to class imbalance, and have an ability to model
non-linear could collectively explain its superior performance in our study.

Table 3: Performance for each machine learning predictors
Machine Learning Predictor Accuracy Precision Recall F1-score
LightGBM 0.9692 0.9708 0.9692 0.9690
Extra Trees 0.9615 0.9639 0.9615 0.9612
K-Nearest Neighbor 0.9615 0.9622 0.9615 0.9613
Ada Boost 0.9615 0.9622 0.9615 0.9613
Decision Tree 0.9538 0.9551 0.9538 0.9535
Support Vector Machine 0.9538 0.9572 0.9538 0.9533
Quadratic Discriminant Analysis 0.9462 0.9506 0.9462 0.9454
Random Forest 0.9385 0.9443 0.9385 0.9375
Multi-Layer Perceptron 0.9385 0.9414 0.9385 0.9378
Linear Discriminant Analysis 0.9077 0.9103 0.9077 0.9081
Logistic Regression 0.8923 0.8962 0.8923 0.8906
Naïve Bayes 0.8923 0.8993 0.8923 0.8900

The study rigorously explores and evaluates twelve distinct machine learning algo-
rithms, providing a comprehensive overview of their performance in predicting early-stage
diabetes risk. Utilizing a grid search parameter approach allows for the systematic op-
timization of hyperparameters, enhancing the precision and reliability of the predictive
models. Detailed explanations of the hyperparameter grid combinations for each algorithm
are provided, facilitating transparency and reproducibility of the study’s methodology. The
inclusion of diverse algorithms and hyperparameter settings enables a thorough compari-
son of predictive capabilities, offering valuable insights into the strengths and weaknesses
of each approach. While the study examines a wide range of machine learning algorithms,
it may not encompass all possible methodologies or variations, potentially limiting the gen-
eralizability of the findings. The performance of the algorithms is assessed using a single
dataset, which may not fully represent the diversity of populations or healthcare settings,
potentially affecting the generalizability of the results. Additional validation studies us-
ing external datasets or real-world clinical data are needed to confirm the robustness and
applicability of the predictive models in practical healthcare settings.

A comparison of the accuracy, precision, recall, and F1-score of each predictor algorithm
is depicted in Figure 3 to Figure 6, respectively. The degree of performance parameter
achieved by each algorithm does not vary substantially.

4 Discussion

Based on the findings outlined in the preceding section, it is noticeable that in general, each
machine learning algorithm employed can generate timely prognostications regarding a
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Figure 3: Accuracy for each Predictors.

Figure 4: Precision for each predictors.

possibility of getting diabetes. The results presented in the table indicate that the Light-
GBM algorithm achieved the highest performance with an accuracy of 0.9692. By contrast,
the logistic regression and naïve Bayes algorithms demonstrated the lowest performance,
each with an accuracy of 0.8923. The success of a machine learning algorithm in predicting
the risk of diabetes depends on various factors, including the quality of the data, the algo-
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Figure 5: Recall for each predictors.

rithm used, and the hyperparameter-tuning. High-quality, well-curated data is crucial for
effective predictions. Fine-tune the hyperparameters of the chosen algorithm to optimize
its performance. The used of grid search or randomized search to find the optimal set of
hyperparameters.

Table 4: Analysis regarding previous research
Method Dataset Result
Proposed Model (LightGBM) 520 recors with 16 attributes (features) Acc = 0.97
Naïve Bayes [15] Pima Indians Diabetes (with 8 independent vari-

ables / features)
Acc = 0.76

Logistic Regression [16] 800 records and 10 attributes Acc = 0.96
XGBclassifier [17] Private dataset of female patients in Bangladesh

(203 records,6 attributes)
Acc = 0.81

CATBoost [18] NHANES dataset (124,821 records with 18
diabetes-relevant factors)

Acc = 0.82

Decision Tree [19] MCH dataset Acc = 0.99
Gradient boosting [20] Pima Indians Diabetes (with 8 independent vari-

ables / features)
Acc = 0.92

Table 4 provides the result comparison regarding previous similar research. Note that
each study used different datasets, optimization techniques, and simulation configurations
for assessment, potentially making direct comparisons inconclusive. The proposed model,
utilizing LightGBM with 520 records and 16 features, stands out with an impressive accu-
racy of 0.97. In comparison, naïve Bayes on the Pima Indians Diabetes dataset achieves an
accuracy of 0.76, while logistic regression, using 800 records and 10 attributes, performs
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Figure 6: F1-score for each predictors.

well with an accuracy of 0.96. The XGBclassifier on a private dataset of female patients
in Bangladesh (203 records, 6 attributes) achieves an accuracy of 0.81. CATBoost, applied
to the NHANES dataset with 124,821 records and 18 diabetes-relevant factors, reaches an
accuracy of 0.82. Decision tree, implemented on the MCH dataset, shows remarkable ac-
curacy at 0.99. Lastly, gradient boosting on the Pima Indians Diabetes dataset achieves an
accuracy of 0.92. The results highlight the efficacy of the proposed LightGBM model and
demonstrate the diverse performance levels across different machine learning algorithms
and datasets in predicting early-stage diabetes risk.

5 Conclusion

In conclusion, this study addresses the urgent need for effective strategies in combating the
rising prevalence of diabetes mellitus. By leveraging machine learning algorithms, particu-
larly the LightGBM model, the research achieves a remarkable accuracy of 0.9692 in predict-
ing early-stage diabetes risk. This underscores the potential of machine learning in provid-
ing precise and timely prognostications for individuals susceptible to diabetes. The novelty
of this research lies in its comprehensive evaluation of twelve distinct machine learning al-
gorithms, coupled with a systematic hyperparameter optimization process. Through this
approach, the study not only identifies the most accurate predictive model but also sheds
light on the strengths and limitations of each algorithm. This contributes to the devel-
opment of individualized healthcare strategies tailored to early diabetes detection and pre-
vention. Moreover, the comparison with previous research highlights the superiority of the
proposed LightGBM model in terms of accuracy, reaffirming its effectiveness in predicting
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diabetes risk. However, it’s important to acknowledge the limitations of the study, such
as the reliance on a single dataset and the potential lack of generalizability across diverse
populations and healthcare settings. For future research, it is recommended to validate
the predictive models using external datasets or real-world clinical data to ensure robust-
ness and applicability in practical healthcare settings. Additionally, exploring ensemble
methods or hybrid models combining machine learning algorithms could further enhance
prediction accuracy and reliability. Overall, this study paves the way for continued ad-
vancements in leveraging machine learning for early diabetes detection and personalized
healthcare interventions.
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