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Abstract: Software defect refers to issues where the software does not function properly.
The mistakes in the software development process are the reasons for software defects.
Software defect prediction is performed to ensure the software is defect-free. Machine
learning classification is used to classify defects in software. To improve the classification
model, selecting the best features from the dataset is necessary. Recursive Feature Elim-
ination (RFE) is a feature selection method. Shapley Additive Explanations (SHAP) is a
method that can optimize feature selection algorithms to produce better results. This re-
search will use the popular boosting algorithm LightGBM as a classifier to predict software
defects. Meanwhile, RFE-SHAP will be used for feature selection to select the best subset of
features. The results and discussion show that RFE-SHAP feature selection slightly outper-
forms RFE, with average AUC values of 0.864 and 0.858, respectively. This improvement
proves that RFE-SHARP is better than a single RFE for feature selection. As for the T-Test
significance result, although employing the feature selection method does not show signif-
icant results compared to the model without feature selection, it does yield better results
than other research based on the AUC result.
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1 Introduction

Software quality remains crucial in the current technological era. Software products must
be devoid of defects to guarantee their optimal use. If the software product contains de-
fects, it can lead to actual financial losses. Handling software defects can be a time time-
consuming process and can result in significant costs. According to [1], errors in writing
codes during software development can lead to software defects. To avoid these defects, [2]
stated that it is necessary to predict software defects during the software development
phase. However, several problems are often encountered in software defect prediction,
including high-dimensional datasets.

Feature selection is a solution to reduce the problem of high-dimensional datasets and
has been widely used in software defect prediction [3], [4]. One of the most popular feature
selection methods is wrapper-based feature selection, as conducted in [5]. Another example
of a wrapper feature selection method is Recursive Feature Elimination (RFE) [6]. Recursive
Feature Elimination is performed by eliminating some features to generate optimal feature
sets [7]. Recursive Feature Elimination has been proven to provide good performance as
a feature selection method in some studies, such as in a study conducted by [2]. How-
ever, although feature selection methods have proven useful, they can still be optimized to
produce better performance [8].

Shapley Additive Explanations (SHAP) provides an interpretive framework for ma-
chine learning model performance based on the game theory approach [9]. In SHAP, each
feature is assigned a feature importance by using Shapely values [10]. SHAP can be com-
bined with feature selection methods and is proven to provide better performance than
using only feature selection without SHAP [8]. One of the feature selection algorithms that
can be optimized with SHAP is RFE. The RFE-SHAP combination is proven to be a feature
selection model with better performance than the single RFE method [11].

A machine learning classifier approach categorizes the software dataset into defective
and non-defective groups [12]. Boosting Algorithms are widely used for classification
problems and have proven to perform well. Light Gradient Boosting Machine (LightGBM)
is one of the algorithms included in the decision tree-based boosting algorithms that ef-
fectively reduce computational costs while maintaining good accuracy [13]. LightGBM'’s
good performance was proven in [14] compared to the CatBoost, XGBoost, and LightGBM
methods. LightGBM has been proven to have faster and more accurate results.

Based on the description above, this research proposes the Recursive Feature Elimina-
tion (RFE) method optimized with Shapley Additive Explanations (SHAP). Light GBM will
be the learning algorithm in RFE and become the final classification model after the feature
selection process. In this study, the data set used is NASA MDP. The RFE-SHAP method
with the LightGBM classifier has never been implemented on the NASA MDP dataset be-
fore.

2 Research Method

2.1 Collect Dataset

In this study, the dataset used is NASA MDP D” obtained from [15] which performs pro-
cessing on NASA MDP datasets to overcome various problems in previous datasets. The
NASA MDP datasets include thirteen datasets. However, this study utilized only five
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Figure 1: Research methodology.

datasets with 37 identical attributes, which are CM1, MW1, PC, PC3, and PC4, similar to
research conducted by [16]. As research by [17], the number of defective and non-defective
classes of every dataset conducted in this study are summarized in Table 1.

Table 1: NASA dataset

Dataset ~ All samples number Defective samples number Nondefective samples number

CM1 498 49 449

MW1 253 27 226
PC1 1109 77 1032
PC2 745 16 729
PC4 1287 177 1110

2.2 LightGBM

According to [18], who proposed LightGBM, LightGBM is a method that implements Gra-
dient Boosting Decision Tree (GBDT). LightGBM is a machine-learning model that com-
bines the predictions generated by numerous decision trees. In the context of LightGBM,
two specific techniques are employed: Gradient-based One-Side Sampling (GOSS) and Ex-
clusive Feature Bundling (EFB). GOSS aims to handle a large number of instances, while
EFB seeks to handle a large number of features. LightGBM has the advantages of a fast and
more efficient training process, low memory usage, better accuracy results, and the ability
to handle large datasets.

According to [19] the results of the trained decision trees are used to predict the resid-
uals of the previous model. Suppose the intention is to construct a LightGBM model, with
the variables T' representing the number of trees and n denoting the number of dataset
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Figure 3: Leaf-wise approach.

samples. The additive training procedure may be represented by Equation 1.
t
3 =37 fulw) = 97+ fulw) (1)
k=1

Where gft) represents the estimated value of the i-th sample at the ¢-th iteration and f;
represents the function acquired for the decision tree indexed by ¢. Throughout the itera-
tions, the current model ; will persist while incorporating a novel function f (or learned
residuals) into the model.

LightGBM utilizes a feature importance score, a numerical value that signifies the sig-
nificance of a feature that has been trained through the implementation of LightGBM. One
of LightGBM'’s feature importance score types is Split, representing the frequency with
which each feature is utilized to split the training dataset throughout all trees [20]. As men-
tioned in [21], LightGBM employs an improved histogram approach. The enhancement
of training speed and the efficiency of space consumption can be achieved by exclusively
choosing optimal segmentation points within k intervals. The decision tree construction
in LightGBM differs from the level-wise strategy by employing the leaf-wise strategy. This
strategy enhances the maximum depth limit while ensuring high efficiency to prevent over-
fitting and reduce training data. The Level-Wise approach and Level-Wise approach are
shown in Figure 2 and Figure 3, respectively.

Most decision tree algorithms adopt a level-wise tree growth strategy. However, split-
ting leaves with a lower splitting gain is redundant and consumes excessive computational
resources. On the contrary, tree growth in a leaf-wise strategy involves identifying the
leaf that offers the highest splitting gain among all leaves, splitting it, and subsequently
iterating this process [22].
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2.3 Feature Selection

This research will have two feature selection scenarios. The first uses the Recursive Feature
Elimination (RFE) algorithm, and the second uses RFE feature selection optimized with
SHAP, namely RFE-SHAP.

Recursive Feature Elimination is a wrapper technique that incorporates a greedy algo-
rithm during its implementation. The wrapper method selects a subset of features from the
feature sets used after training the model. The RFE algorithm starts by using all the fea-
tures and then eliminates features in each iteration until the specified number of features
remains. The features selected for elimination are determined based on the evaluation re-
sults of the classification [2].

As stated by [23], RFE selects the best feature subset while eliminating based on feature
ranking. The procedure for the feature selection process using RFE is as follows:

1. Train a classifier.
2. Compute the ranking criteria for each feature from feature importance.
3. Eliminate the feature with the lowest feature importance.

The RFE procedure will be repeated until the specified number of feature subsets persists.
During each iteration, a single feature or multiple features may be eliminated. In terms of
computation, removing features one by one will be more expensive. The computational
cost will be more efficient if various features are removed simultaneously. However, this
may lead to a degradation in the model’s performance. Eliminating features one by one
will result in ranking each feature in each iteration. On the other hand, eliminating sev-
eral features at once will result in ranking subset features in each iteration. The feature
elimination process used in this research will eliminate one feature in each iteration.

SHAP (Shapley Additive exPlanations) is a unified framework for interpreting the pre-
diction results of a model. SHAP applies the marginal effects of features to explain the
result of every machine learning model. Understanding how the model makes some pre-
dictions is very important. It is common to use complex models, such as ensemble meth-
ods, to achieve good accuracy results. Complex models are usually difficult to interpret.
Therefore, SHAP was designed to overcome this problem. SHAP applies Shapley values to
interpret the model. SHAP assigns a weight value to each feature for a particular predic-
tion. SHAP aims to improve the interpretation of machine learning models by generating
the partial contribution of each feature to model predictions [10].

According to [21], the fundamental principle underlying the SHAP method concept is
rooted in the Shapley value, a well-known concept in combinatorial game theory. The
definition of the Shapley value for a feature can be expressed as the difference between the
previous contribution of the features set and the contribution made by the new feature.
When calculating the Shapley value for feature D, given that S represents the set of features
and v(S) is the set contribution, the estimation of the Shapley value can be achieved by
employing the Equation 2.

¢p = v(SUL{D}) —v(S) )

Due to the excessive complexity of the original model, it cannot be employed as an
interpretive model for integration models and neural networks. Consequently, an inter-
pretation model with a more concise definition is utilized to interpret the original model.
The contribution of additive features can be expressed mathematically as a linear function,
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wherein a binary variable is used to represent the independence from the model. This is
shown in the Equation 3.

M
9(2') = ¢o + Z iz ®3)
i=1

Where g is the explanatory model, M represents the set of features, ¢g represents the
average value of the input data employed in the model’s predictive process, and z; is a
binary value (0 or 1), which signifies the existence or nonexistence of the feature. The de-
termination of the significance of a specific feature can be achieved through the utilization
of Equation 4. Initially, a search is conducted to identify all potential combinations of fea-
tures that exclude the particular feature. Then, the Shapley value is derived by computing
the combinations that align with the specific feature. Subsequently, the value is assigned a
weight to contribute to the overall total.

¢; = 3 151 p = 1] _1)!(Val(SU{xj})—Val(S)) (4)

|
SC{ar ey P\ o)} r

Where S is the subset of features used in the model, z is the sample eigenvalue vector
to be interpreted, p is the number of features, val(S) represents the output value of the
model when S combinations of features are considered, the number of combinations when
p features are accounted for as represented by p!, after selecting feature j, the remaining
number of combinations is |S|!(p — |S| — 1)!.

Based on the research conducted by [21], the steps of RFE-SHAP are as follows:

1. Train a model.

2. Compute feature weights using Shapley values.

3. Rank features based on the obtained Shapley values and eliminate features with the
smallest Shapley values.

2.4 Performance Measure

The evaluation method used in this research is Area Under Curve (AUC). In addition, a
paired T-test will be conducted to determine the significance of the RFE and RFE-SHAP
feature selection results compared to the model without feature selection.

AUC serves as a metric for assessing the effectiveness of a classifier model in terms of
accuracy. AUC is the area under the Receiver Operating Characteristic (ROC) curve [24].
ROC curve is a valuable tool for evaluating and quantifying the discriminative capacity of
predictive models. However, it is worth noting that this particular metric has faced criti-
cism about its clinical relevance and the absence of an intuitive interpretation. Despite these
concerns, the ROC curve remains a prominent method employed to assess the performance
of predictive models [25].

AUC is the preferred metric for evaluating the effectiveness of a classifier when dealing
with imbalanced datasets [26]. AUC provides a single numerical value that falls from 0
to 1. The utilization of the ROC-AUC curve serves to distinguish and analyze the trade-
off that exists between the true positive rate (TPR) and the false positive rate (FPR) [27].
AUC can be determined by calculating the integral of the curve, thereby determining the
total area enclosed. It is important to note that a greater area indicates a higher performance
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level. The AUC value, when it is equal to 1, serves as an indication of optimal performance.
On the other hand, when the AUC value is equal to 0, it indicates the worst possible per-
formance [28]. According to [29], the interpretation guidelines for AUC as a measure are
shown in Table 2.

Table 2: Performance interpretation based on AUC

AUC range Evaluation

AUC=0.5 Totally random, as good as tossing coin
0.5 < AUC < 0.7  Poor, not much better than a coin toss
0.7<AUC < 0.8 Acceptable
0.8 < AUC< 0.9 Excellent

0.9 < AUC Outstanding

Based on the research of [30], the AUC measure is obtained from calculations using
ROC curve analysis using Equation 5.

AUC:1+TPI2{—FPR 5)

To determine the significance of the performance results between the model after fea-
ture selection and the model without feature selection is achievable through the use of a
T-Test. The T-test is a statistical analysis method that evaluates the presence between the
dependent and independent variables. This test serves as a tool to measure the strength
and importance of the correlation between the pair of variables. By examining the data
and calculating the T-value, the T-test determines whether the observed association is sta-
tistically significant or not [31].

The type of T-test used in this research is the Paired T-test, and the level of significance
(«) chosen is 0.05. For assessment based on teount and tiaple, if the value of teount > trable,
then the null hypothesis Hj, is rejected and the alternative hypothesis H; is accepted. For
assessment using P-value, if the P-value < «, the null hypothesis Hj is rejected, and the
alternative hypothesis H; is accepted. The null hypothesis H, indicates the absence of a
statistically significant difference between the model with feature selection and the model
without feature selection. In contrast, the alternative hypothesis H; indicates a statistically
significant difference between the model with feature selection and the model without fea-
ture selection. One way to get T-Test results can be done using tools such as Excel. The
T-test conducted in this research uses Excel.

3 Results

This research uses five NASA MDP D datasets (CM1, MW1, PC1, PC3, PC4). The con-
ducted experiments within this study will evaluate three models, specifically the model
without applying feature selection, the model using the RFE feature selection algorithm,
and the model using the RFE-SHAP feature selection algorithm. All trials will use the
same classification model, namely LightGBM. The evaluation method used is AUC.
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3.1 Analysis Without Feature Selection

It is necessary to know how the model performs without feature selection to see how it
performs after feature selection. The model will be built using the LightGBM method for
classification. The method employed for validation is Stratified 10-fold Cross Validation.
Meanwhile, the evaluation method used is AUC.

In the first step, the dataset was partitioned into distinct subsets consisting of 10 folds,
all of equal proportions, achieved through applying the Stratified 10-fold Cross Validation
technique. This technique ensured that each fold maintained a balanced distribution of
instances across the various classes, thereby enhancing the robustness and reliability of the
model evaluation process.

The data partitioning resulted in 10-fold data. Nine folds of the 10-fold data are used
as training data, and one fold is used as testing data. After the Stratified 10-fold Cross
Validation stage, the dataset will be used for the classification process using the LightGBM
method. After the classification process, the next step is to evaluate the result with AUC.
The results of the classification and evaluation process without feature selection for 5 NASA
MDP D" datasets are shown in Table 3.

Table 3: AUC result for the model without feature selection

Dataset AUC

CM1 0,795
PC1 0,880
PC3 0,817
PC4 0,941

3.2 Analysis Feature Selection

The feature selection stage conducted in this research consists of two experimental scenar-
ios. The first experiment performed feature selection with RFE, and the second performed
feature selection with RFE optimized with SHAP, namely RFE-SHAP.

The first scenario is to perform feature selection with RFE. The first step of RFE involved
training the classifier using all features in each dataset without partitioning the data into
training and test sets. The classifier utilized in this study is LightGBM. Each feature was
ranked based on its importance value, which resulted after fitting the data using LighGBM.
LightGBM defaulted to the Split metric, representing the frequency of a feature’s uses in
splitting nodes throughout the decision tree.

A higher Split value indicates greater feature importance. Subsequently, the feature
with the lowest importance value was eliminated, while the remaining features proceeded
to the next stage. The subset of the remaining features will be used in the next stage. The
remaining subset of features will be trained again using the classifier, this time using the
Stratified 10-fold CV validation technique for data partitioning. After that, the evaluation
was performed using AUC.

To determine how many feature subsets perform best in RFE feature selection, all pro-
cesses will be tried on all possible feature subsets in each dataset. The experiment will stop
if there are two remaining feature subsets because if only one feature, it cannot be used for
classification.

*  https://ejournal.ittelkom-pwt.ac.id /index.php/infotel
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Figure 4: CM1 result.

In the second scenario, feature selection was conducted employing RFE-SHAP. This
feature selection process is similar to RFE. Unlike RFE, which evaluates and prioritizes
features according to their importance as determined by the learning model, the RFE-SHAP
method diverges in its approach by integrating the SHAP technique. This method involves
the assignment of specific weightings to each feature within the dataset, employing the
Shapley value to derive these weightings. The RFE-SHAP algorithm starts by training the
model using all feature subsets. This initial training phase involves using all data samples
without partitioning them into training and test sets. After training the model, SHAP is
employed to compute weight values for all features. After obtaining the weight values,
these weight values are sorted in descending order. The feature with the lowest weight
value is removed.

The remaining subset of features will be retrained using the classifier, and this time, the
Stratified 10-fold CV validation technique will be implemented. After that, the model will
be evaluated using AUC. This process is iteratively applied to all conceivable feature sub-
sets within each dataset to obtain the optimal evaluation results. The experiment will stop if
the remaining subset of features amounts to two, as utilizing a feature subset of one would
render it unsuitable for classification. The results of RFE and RFE-SHAP experiments on 5
NASA MDP D” datasets are visually presented in Figure 4, 5, 6, 7, and 8.

4 Discussion
The outcomes of RFE and RFE-SHAP will be compared with models without feature selec-

tion. The evaluation will be conducted based on the utilization of the number of features
used and the AUC results of each model. Firstly, the number of features acquired after
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applying RFE and RFE-SHAP feature selection will be compared. The results are shown in
Table 4. The numbers in bold indicate the highest values.

Table 4: Comparison of the number of features used before and after feature selection

Dataset  Without feature selection RFE RFE-SHAP

M1 37 36 12

MW1 37 4 8

PC1 37 17 13
PC3 37 10 20
PC4 37 29 15

The AUC evaluation results for the model without feature selection will be compared
with the model using RFE and RFE-SHAP feature selection. The results are shown in Ta-
ble 5. The numbers in bold indicate the highest values

Table 5: AUC Results

Dataset  Without feature selection = RFE  RFE-SHAP

M1 0,795 0,795 0,821
MW1 0,706 0,836 0,823
PC1 0,880 0,892 0,899
PC3 0,817 0,824 0,830
PC4 0,941 0,943 0,948
Average 0,827 0,858 0,864

Figure 9 represents the graphical form of the different AUC results for all datasets based
on Table 5. It can be seen that 4 out of 5 datasets in the RFE-SHAP method have the best
outcomes compared to other models.

The proposed method, RFE-SHAP, performs best compared to the model without fea-
ture selection and RFE feature selection. Whether the model exhibits a significant change
or not after feature selection can be determined by conducting a T-Test. Therefore, a T-Test
will be performed to evaluate the significance of AUC results for models without feature
selection and that use RFE and RFE-SHAP feature selection. The RFE vs the model without
feature selection T-Test results are shown in Table 6. For the RFE-SHAP vs. the model
without feature selection, T-test results are shown in Table 7.

Table 6: RFE vs. Without feature selection AUC T-Test result

Paired T-test
df 4
tcount 1.215
tiable 2.776
P-value 0.291
o 0.05

*  https://ejournal.ittelkom-pwt.ac.id /index.php/infotel
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Figure 9: AUC result.

Table 7: RFE-SHAP vs. Without feature selection AUC T-Test result

Paired T-test
daf 4
tcount 1.788
tiable 2.776
P-value 0.148
o 0.05

It can be seen that tcount < twble fOr the results in Table 6 and Table 7. Because tcount <
twable, the null hypothesis Hy is accepted and the alternative hypothesis H; is rejected in
both table. Meanwhile, it can also be seen that the P-value > o = 0.05 in both tables, which
means that Hy is accepted. Hy is accepted, indicating no significant difference between the
RFE results and the model without feature selection.

Table 8 compares the AUC performance of the proposed method and other studies in
software defect prediction proposed by [4] and [5]. Research conducted by [4] proposed
Particle Swarm Optimization (PSO) for feature selection with Random Under Sampling
(RUS) and SMOTE to handle imbalanced data. The research also used ensemble bag-
ging with the Naive Bayes Classifier. In addition, research by [5] proposed an enhanced
wrapper-based feature selection (EWFS) with Naive Bayes and Decision Tree classifier.

It can be seen that the proposed model, RFE-SHAP feature selection, has higher results
than the enhanced wrapper feature selection in research conducted by [5]. The proposed
model also outperforms the combination of feature selection and RUS or SMOTE sampling
methods in [4]. Therefore, even though there is no imbalanced data handling in this re-
search, the results still outperform those of other studies. The bold values in Table 6 show
the highest score among other results.
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Table 8: Comparison of the AUC results of the proposed method with other studies

Dataset Proposed Model 141 51
PSO + SMOTE + BG+NB EWFS+NB EWFS+DT PSO +RUS +BG +NB
CcM1 0,821 0,733 0,722 0,509 0,741
MW1 0,823 0,806 0,756 0,536 0,776
PC1 0,899 0,84 0,826 0,726 0,869
PC3 0,830 - 0,806 0,687 -
PC4 0,948 0,844 0,845 0,878 0,82

5 Conclusion

Based on the conducted research, it can be concluded that the performance results of Recur-
sive Feature Elimination (RFE) with LightGBM classification on 5 NASA MDP D” datasets
have an average AUC of 0.858. Meanwhile, the performance results of Recursive Feature
Elimination optimized by Shapley Additive Explanations (RFE-SHAP) with LightGBM
classification on 5 NASA MDP D datasets have an average AUC of 0.864. RFE-SHAP
used a fewer number of features than RFE in 3 out of 5 datasets; CM1, PC1, and PC4. All
the results prove that RFE-SHAP performs slightly better than RFE while using fewer fea-
tures. Even though the T-Test showed that both RFE and RFE-SHAP have no significant
result compared to the model without feature selection, RFE-SHAP has outperformed other
research based on AUC results comparison.
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