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Abstract: Brain tumors represent a significant public health concern due to their high mor-
bidity and mortality rates. Early and accurate detection is paramount for optimizing treat-
ment efficacy. However, manual analysis of large-scale medical imaging datasets presents
a substantial challenge, characterized by both time constraints and inherent susceptibility
to human error. This has spurred the development of automated brain tumor classification
systems using machine learning and deep learning techniques, but achieving high accu-
racy remains a persistent issue. This study addresses this challenge by proposing a hybrid
brain tumor classification model that extracts hierarchical features from MRI scans using a
pre-trained ResNet-50 and fuses into an optimized Logistic Regression classifier to enhance
classification accuracy. Data augmentation is employed during training to improve gener-
alization. The model is evaluated on an independent test set using metrics like accuracy,
precision, recall, and Fl-score. The deep feature fusion with the optimized Softmax re-
gression technique on the test dataset achieved an overall classification accuracy of 96.3%,
outperforming individual deep learning and machine learning models. Incorporating data
augmentation further boosted performance, with 98.47% accuracy and 99% F1 score. The
study demonstrates the potential of synergistically combining deep representation learning
for accurate brain tumor classification from MRI scans. This framework shows promise for
clinical deployment to support improved computer-aided diagnosis and treatment plan-
ning.

Keywords: brain Tumor, classification, hybrid learning, MRI, ResNet-50, Softmax Regres-
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1 Introduction

The pathology of brain tumors is one of the most common death problems and is consid-
ered an important priority for the healthcare society [1]. A brain tumor is a condition that
causes poor brain function as a result of abnormal tissue growth in the brain [2]. Brain
tumors come in various forms, with gliomas, meningiomas, and pituitary tumors being
prime examples. Gliomas arise from supportive tissues within the brain, excluding nerves
and blood vessels. In contrast, meningiomas form from the protective membranes sur-
rounding the brain and spinal cord. Pituitary tumors, on the other hand, develop within
the skull [3]. A crucial distinction lies in their malignancy: while meningiomas are typically
benign, gliomas are often malignant. Even benign pituitary tumors can cause health issues.
Accurate differentiation between these tumors throughout diagnosis and beyond is essen-
tial for optimal patient care [4]. The position of such tumors is determined using Magnetic
Resonance Image (MRI). Accurate diagnosis of brain tumor type is crucial for crafting a
recovery plan that minimizes life-threatening risks. This task traditionally involves visual
analysis by trained professionals, but it’s a time-consuming process and prone to human
error [5,6]. Machine learning-based automated image analysis offers a promising alter-
native to these concerns. Recent studies explored the use of machine learning methods
like Support Vector Machines, K-Nearest Neighbors, and Random Forests for classifying
medical images. These methods usually begin with a pre-processing stage to extract key
features before performing classification [7].

Different feature extraction techniques exist, with the Gray-Level Co-occurrence Matrix
(GLCM) being a common choice for capturing low-level features from images [8]. How-
ever, pinpointing the single most effective feature for peak accuracy remains a challenge.
Deep Learning (DL) algorithms, particularly Convolutional Neural Networks (CNNs), are
revolutionizing the field. Their popularity stems from their ability to handle massive
datasets by passing data through multiple layers. Each layer progressively extracts fea-
tures and transmits them to the next, creating a powerful feature hierarchy [9,10]. Deep
learning stands out for its ability to automatically learn features from data, eliminating the
need for manual feature engineering [11]. However, DL algorithms require vast amounts
of labeled training data, which is difficult to obtain. To address these difficulties, recent
studies have used transfer learning to create hybrid models that combine the strength of
pre-trained deep learning for feature extraction while requiring less data and applying ma-
chine learning for classification. The application of this method has proven to be efficient
and to produce greater accuracy in brain tumor classification [12].

Transfer learning by feature extraction is effective when the data is small, as in the brain
tumor dataset. However, even though several ML algorithms have been used on the ex-
tracted features for classification, none have explored the power of logistic or Softmax re-
gression. According to [13], combining optimized logistic regression with techniques in-
spired by Newton’s methods offers a compelling classification approach, particularly for
datasets of moderate size. Studies comparing this method to Support Vector Machines
(SVM) on twelve public datasets revealed comparable accuracy while achieving signifi-
cantly faster processing times. The Logistic Regression (LR) and Softmax Regression (SR)
approach provides direct prediction probabilities as well as rapid active learning of ex-
tracted images [14, 15]. Previous research in medical image analysis has faced limitations
in terms of its reliance on manual feature engineering, which is time-consuming and prone
to errors [7,8]. Additionally, while deep learning approaches like CNNs show promise,
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they often require large datasets that are difficult to obtain in the medical field [11]. While
transfer learning has partially addressed the data scarcity issue, many studies still employ
basic classifiers for the final classification stage, leading to suboptimal performances [12].
Therefore, there is a need for methods that can effectively leverage pre-trained networks
and optimize the final classification process to achieve high accuracy. This study proposes a
novel approach that leverages the ResNet-50 architecture for feature extraction and an opti-
mized Softmax regression model for classification. The knowledge transferred from large-
scale image datasets makes ResNet-50 effectively address the data limitations inherent in
the medical domain. Additionally, the optimized Softmax regression model is specifically
tailored to the medical imaging context, enhancing classification accuracy beyond that of
basic classifiers. The notable contributions of the proposed study include:

1. An empirically pre-trained ResNet-50 architecture for deep feature extraction and
optimized Softmax regression for classification is presented to outperform previous
state-of-the-art CNN architectures in terms of efficacy and efficiency.

2. The proposed hybrid model is trained on both augmented and unaugmented im-
ages and tested on four different classes of brain MRI images, namely glioma, menin-
gioma, pituitary, and no tumor images, concluding that augmentation influences clas-
sifier accuracy.

3. Furthermore, a detailed comparative analysis is presented to evaluate the accuracy
and efficiency of the proposed research study with previous state-of-the-art hybrid
models on brain tumors.

2 Literature Review

Initially, automatic brain tumor classification relied on traditional machine learning tech-
niques, which included pre-processing and feature extraction before making classifications.
Traditional machine learning algorithms heavily rely on feature extraction for image clas-
sification tasks like brain tumor detection. These features can be categorized as either low-
level (global) or high-level (local). Low-level features capture basic image properties like
texture, intensity, and statistical measures (mean, standard deviation, etc.). Common ex-
amples include gray-level co-occurrence matrices, wavelength transforms, and Gabor fea-
tures. High-level features, on the other hand, focus on specific details within an image,
such as Fisher Vectors (FV), Scale-Invariant Feature Transforms (SIFT), and Bag-of-Words
(BoW) [12].

Several studies have explored classical machine learning methods for brain tumor clas-
sification. For instance, one study used a Support Vector Machine (SVM) with first and
second-order statistics to distinguish normal and abnormal brain MRIs [16]. Another
employed Gray-Level Co-occurrence Matrix (GLCM) and wavelet transform-based ap-
proaches for tumor identification and classification [17]. While these low-level features
effectively capture basic image characteristics, their ability to differentiate between tumors
can be limited due to similarities in texture, shape, and size [18]. Other studies have used
artificial neural networks and genetic algorithms for feature extraction and classification,
but these approaches often require manual intervention and prior knowledge about the tu-
mor’s location [18,19]. A key challenge with traditional machine learning for brain tumor
classification lies in its focus on either local or global features. Additionally, these methods
rely on manually designed features, which can be time-consuming and require domain
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expertise. This increases the likelihood of human error. When compared to traditional
ML, deep learning, particularly the Convolutional Neural Network (CNN), eliminated the
problem of handcrafted features that machine learning had [20,21]. This automatic feature
extraction in CNN eliminates the need for manual feature engineering, a crucial step in
traditional machine learning methods for tasks like image segmentation, classification, and
object recognition [22,23].

In recent years, automatic brain tumor classification has gained popularity due to its au-
tomatic representation of pertinent characteristics and has outperformed other approaches
in various medical imaging tasks [24]. Several studies employed artificial neural networks
(ANNSs) to distinguish between normal and malignant tumors. For instance, one study
utilized a three-layer feed-forward ANN with a single hidden layer containing 50 nodes
for classification [25]. More recent work has explored deep learning architectures for clas-
sifying brain tumors into different types. One such study focused on classifying menin-
gioma, glioma, and pituitary tumors using T1-weighted contrast-enhanced MRI (CE-MRI)
images [26]. To mitigate potential confusion from analyzing multiple image planes, the
study used 989 axial slices from 191 patients and achieved an accuracy of 91.43% after ap-
plying data augmentation techniques. To address challenges like vanishing gradients and
overfitting in multi-tumor classification, another study proposed a deep neural network
model based on ResNet-50 with global average pooling [27]. This approach achieved a
mean accuracy of 97.08% with data augmentation and 97.48% without, utilizing MRI im-
ages from three distinct brain tumor types. Meanwhile, [28] developed a three-class MRI
brain tumor classification method using Levenberg-Marquardt for network construction,
as well as a neural network with an effective training function, which yielded a 95.4%
accuracy rate.

In a different study, a deep learning network was trained by [4] using 3-class brain
MRI scans, employing a 10-fold cross-validation technique, achieving a classification accu-
racy of 95.40% for the original dataset and 96.56% for the augmented images dataset. To
address the resource limitations and small size of medical image databases, transfer learn-
ing of pre-trained networks was used by later researchers. While [29] improved the MRI
reconstruction by using the alternative direction method of multiplier method based on
variable splitting technique, deep learning requires a significant amount of resources. This,
together with the small size of medical image databases, poses a problem. Later researchers
used the transfer learning of pre-trained networks to overcome this difficulty. [30] utilized
a pre-trained network to classify the images into their appropriate categories. The fine-
tuning method was used to assess the accuracy of the AlexNet, GoogleNet, and VGGNet
models. For the original datasets, accuracies of 95.86%, 95.61%, and 95.42% were reported
with training times of 42 minutes 36 seconds, 79 minutes 25 seconds, and 89 minutes 30 sec-
onds, respectively. The researchers employed a five-fold cross-validation technique to thor-
oughly assess the performance of their integrated system. This evaluation demonstrated
that the proposed model surpassed existing leading methods, achieving an impressive
overall classification accuracy of 95.82%. [31] reported three alternative CNN models: (i)
for detecting tumors, (ii) for classifying tumor types, and (iii) for determining tumor stages.
The accuracy achieved in classifying tumors into three categories was reported as 92.66%.
Another study [32] used CNN to extract features from brain MRI scans and combined them
with SVM to classify medical images. The method was tested on an open dataset from
Figshare that contained MRI images of three brain tumor types. The proposed model out-
performed the previous state-of-the-art method with an overall classification accuracy of
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95.82%, which was tested and evaluated using a five-fold cross-validation technique. Sub-
sequent methods were able to add a "no tumor" class to the classification. [20] proposed
employing a Multi-Scale CNN (MSCNN) architecture to scale deep learning in order to
construct a robust classification model for brain tumor diagnosis. The suggested model
was a multi-class classification solution for MRIs that categorizes them as glioma, menin-
gioma, pituitary, or non-tumor. According to the experimental results, MCNN achieved
91.2% accuracy and a 91% Fl-score, which were much higher than AlexNet and ResNet
approaches. Some investigation proposed a series of three CNN models: one for tumor
detection, another for classifying tumor types, and a third for determining the stages of dif-
ferent tumors [31]. This particular model achieved an accuracy of 92.66% in classifying tu-
mors into three distinct categories. Another study combined CNN-extracted features with
Support Vector Machines (SVM) for brain tumor classification [32]. This method, tested
on a publicly available dataset of MRI images with three tumor types, surpassed previous
methods with an overall accuracy of 95.82% using a five-fold cross-validation technique.
Building upon this progress, subsequent research incorporated a "no tumor" class into the
classification process [20]. This study proposed a Multi-Scale CNN (MSCNN) architecture
to achieve robust classification for brain tumor diagnosis. The model categorized MRIs
as glioma, meningioma, pituitary, or non-tumor, achieving an accuracy of 91.2% and an
Fl-score of 91%, surpassing the performance of AlexNet and ResNet architectures. [12]
proposed the potential of combining deep features extracted from multiple CNN architec-
tures (DenseNet-169, Shufflenet, and MnasNet) with a machine learning classifier (SVM
with Radial Basis Function kernel) for brain tumor classification. This ensemble approach
aimed to classify brain tumors into four categories (glioma, meningioma, pituitary, and no
tumor) and achieved an accuracy of 93.7%. [11] investigated a transfer learning-based hy-
brid model for brain tumor classification. This method leveraged a fine-tuned GoogleNet
architecture for feature extraction followed by pattern classification. The researchers eval-
uated the model’s performance using a dataset containing a substantial number of MRI
images categorized as glioma, meningioma, pituitary tumor, and normal brain tissue. The
results showed that using Google-Net for feature extraction and adding SVM for classifica-
tion improved the recognition accuracy to 98.1%.

Despite recent advancements in deep learning for brain tumor classification [11,12,20],
significant challenges persist. While transfer learning has shown promise [30, 31], the full
potential of combining fine-tuned state-of-the-art architectures like ResNet-50 with opti-
mized classifiers remains unexplored, particularly for improving classification accuracy
across multiple tumor types. Current approaches often struggle with limited medical imag-
ing datasets [29,32], and the impact of data augmentation on classification performance is
not fully understood [4,26]. Notably, previous research has largely overlooked the poten-
tial of logistic/softmax regression for this task [11,20,32], despite its simplicity and ability
to effectively capture clear intrinsic features when combined with powerful feature extrac-
tors [14, 15]. This oversight represents a missed opportunity to leverage a computationally
efficient classifier that could potentially enhance accuracy when paired with advanced fea-
ture extraction techniques. Therefore, this study aims to address these gaps by proposing
a novel hybrid approach combining a fine-tuned ResNet-50 for feature extraction with an
optimized Softmax Regression classifier. Our primary goal is to significantly enhance clas-
sification accuracy across various brain tumor types, even with limited data, while main-
taining computational efficiency suitable for clinical applications.
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3 Research Method

In this study, an MRI-based brain tumor classification model is developed using transfer
learning by feature extraction technique to differentiate four different brain images. The re-
search study followed a normal image recognition pipeline with preset phases, comparable
to most classic recognition applications. The proposed technique applies ResNet-50 with
optimized Softmax regression for the classification. Figure 1 depicts the hybrid process
model employed in this study.

3.1 Dataset

In this study, we used a dataset that was publicly available on Kaggle, originally provided
by [33]. The dataset included a total of 3264 MRI images categorized into four groups:
glioma, meningioma, pituitary, and non-tumor, as depicted in Figure 2. The images used
in this study were a combination of T1, T2, and Flair images. T1 images are generated by
using short Time to Echo (TE) and long Repetition Time (RT), while T2 images are produced
using long TE and RT. Flair images are similar to T2 images but have longer TE and RT
times. These different image sequences generate contrast and brightness in the MRI scans
based on the properties of the tissue being imaged. The dataset was randomly split into
training and testing sets, with 80% of the data used for training and the remaining 20%
used for testing. Each folder in the dataset was further divided into four subfolders based
on the categories of brain tumors.

Image Newton CG
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Training Set ResNet-50 | ofTraining Set 2| Regression
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Figure 2: Class divisions of brain tumors from MRIs.
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These folders contain MRIs of various tumor classes. Table 1 depicts the dataset’s class
distribution. 926 MRIs are from gliomas, 937 are from meningiomas, 500 are from non-
tumor patients, and the remaining 901 are from pituitary patients.

Table 1: Class distribution of MRI brain images used

S/N Class Number of Images
1 Glioma 926
2 Meningioma 937
3 Non-tumor 500
4 Pituitary 901
Total 3264

3.2 Image Augmentation

To increase the size of the training dataset, image augmentation was used due to the limited
size of the dataset. Image augmentation is a technique that creates an artificial dataset by
modifying the original images. Various image enhancement techniques such as shearing,
contrast adjustment, horizontal flipping, rotation, zooming, and blurring were used for this
purpose as in [34]. In this study, we used auto augmentation [35], which automates aug-
mentation procedures for effective data augmentation by applying reinforcement learning
as a search method to determine the optimum selections and ordering of these operations
such that training a neural network provides the best validation accuracy. The generated
dataset is then resized to 224 x 224 pixels, transformed to array format, and the pixel in-
tensities in the input image are scaled to the [—1, 1] range (via the convenience preprocess
input function). Figure 3 depicts the axial view of the meningioma MRI image before and
after augmentation.

3.3 Transfer Learning by Feature Extraction Using Pre-trained ResNet-50

Figure 3: Axial view of meningioma tumor before and after augmentation.

Transfer learning refers to a technique in which a pre-trained model on a large bench-
mark dataset, such as ImageNet [36], can be used as a starting point for a different task with
a smaller dataset, such as MRI data. This approach allows for a significant reduction in the
training time required for deep learning models, as well as the need for a large dataset for
model training. Instead of starting from scratch, transfer learning leverages the existing
knowledge learned by the pre-trained model on large datasets, which can be beneficial
for the target task [37]. In this particular study, we used a state-of-the-art network called
ResNet-50, which was pre-trained on the ImageNet dataset. The ResNet-50 architecture
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was designed to overcome the vanishing gradient problem that was previously experi-
enced by deep neural networks, making it well-suited for image recognition challenges.
We chose to use ResNet-50 because of its advantages in image classification problems, as
demonstrated experimentally by its superior performance on the COCO dataset [38]. By
utilizing transfer learning and ResNet-50, the researchers were able to leverage the pre-
trained knowledge of the model and fine-tune it for the specific task of classifying brain
tumor MRI images. To match the input criteria of ResNet-50, the MRI images were resized
and scaled down to 244 x 244. The network was then used as a feature extractor, where
propagation was halted at a pre-defined layer, specifically the pooling layer before the fully
connected layers. The resulting values were treated as a feature vector with an output
shape of 7 x 7 x 2048. These values were then flattened, resulting in a list of 100,352 values
that served as our feature vector in the last conv block as shown inFigure 4. This process
was repeated for the entire image dataset, generating a list of N vectors, each with 100,352
dimensions. The resulting batch of feature vectors was then saved to a CSV file, with the
class as the first entry in each row. This process was repeated for all batches within each
split of the dataset and finally, the label encoder was saved to disk. With these feature
vectors, the Softmax regression model was optimized and trained to recognize new classes
of MRI images. This technique proved to be particularly useful when dealing with small
datasets, as CNN models generally perform better with larger datasets. Transfer learning
enables the utilization of pre-trained models, reducing the need for large training datasets
and minimizing training time.

3.4 Optimized Softmax Regression for Classification

LR is a supervised learning approach that uses the Sigmoid function on the input feature
to identify target values. This Sigmoid function calculates the likelihood of making a clas-
sification judgment. The LR algorithm is most commonly used for binary classification,
although it can also be adjusted for multiclass classification tasks. The improved version,
called "Softmax regression," is based on the Softmax function, which provides a better ap-
proximation of the expected target class [39].

ResNet50 Model Architecture
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Figure 4: ResNet-50 for feature extraction.

SR (also known as multinomial LR) extends logistic regression to handle many classes.
We assumed that the labels in LR were binary: y® € 0,1 and we use such a classifier to
distinguish between two classes. In the case of Softmax regression, it allows us to handle
vy € 1,... n, where N is the number of classes. Recall that in logistic regression, we had
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a training set (™, yMW) ..o (2™ 4 of m labeled examples, where the input features
are (V) € R¥. In the binary classification setting, the labels were y() € 0, 1. So our equation
took the form of 1:

1

= 1
ha(@) 1+ exp —67= M
Also, the model parameters were trained to minimize the cost function as in ??
labeleq : 2J(0) = — | >y log ha(x™) + (1 — ') log(1 — hg(x™) )
i=1

The focus extends beyond binary classification rather, multi-class classification prob-
lems in the context of Softmax regression models. In such cases, the label variable y is not
constrained to two values but can assume multiple discrete values across a broader range.
Thus our training set (™), y™M), ... (2™, y(™)) now have y(") € 1,2,--- | N. For example,
in this study classification, we would have N = 4 different classes, i.e. there may exist 4
different classes that the input data could belong to. Given a previously unseen test input
x, we want our hypothesis to estimate the probability that P(y = n|x) for each value of
n=1,---,N. ie., the probability of the class label taking on each of the N different possi-
ble values. Thus, our equation will output a N-dimensional vector (whose elements sum
to 1) giving IV estimated probabilities. There is a loss function that expresses how close the
classifier’s output is to the target label.

The aim is to minimize the difference between the expected and actual output, which
is represented by the loss function. However, if the selected features are not appropriate,
the model may overfit the data, leading to an increase in the value of the corresponding
coefficient. To avoid overfitting, regularization is used to penalize excessive weights. L2
(also known as Ridge) regularization was employed for the study, which adds a scaled sum
of the squares of the coefficients to the objective function. A mathematical model known
as a solver is used to minimize the loss function by combining regularization. Newton-cg,
Liblinear, LBFGS, SAG, and SAGA are the solvers, with each having its advantages and
disadvantages. Newton-cg was chosen because it applies to nonlinear classification. The
solver’s inverse is set as the C' parameter, and while fine-tuning, the ideal value for C was
chosen as 0.1.

The choice for LR in this paper is because of LR inherent strength in binary classifica-
tion and its natural extension to multi-class problems through SR makes it a well-suited
choice for the four-class brain tumor classification task. Additionally, Logistic Regression’s
computational efficiency and straightforward optimization are advantageous when deal-
ing with high-dimensional features extracted by ResNet-50, particularly in time-sensitive
medical applications. Furthermore, SR when optimized thrives with well-separated fea-
tures, and the fine-tuned ResNet-50 model is designed to extract precisely such features
from MRI images.

4 Results

This section delves into the experimental analysis conducted to assess the effectiveness of
the proposed model. We first describe the computational environment used for the experi-
ments. Next, we explored the various evaluation metrics employed to measure the model’s
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performance. Following this, we presented the experimental results achieved by the model,
considering both scenarios with and without data augmentation. Finally, to gain deeper
insights into the model’s effectiveness, we conducted a comparative analysis against other
leading techniques discussed in previous literature. Through this comprehensive evalua-
tion process, we aim to provide a detailed account of the experimental methodology and
outcomes of our study.

4.1 Experimental Environment

A Python programming language is used to carry out the experiment. Libraries used are
Keras and TensorFlow for feature extraction and PyTorch for data augmentation. Other
tools and specifications are outlined in Table 2.

Table 2: System environment used for the model
System Specification Description

Operating System Windows 10
RAM 8 Gb
Processor Core i5

Tool Anaconda
Language Python

4.2 Performance Evaluation

As indicated in Table 3, four performance evaluation metrics were employed to assess the
performance of the proposed model: accuracy, precision, recall, and F1-measure. Classi-
fication Accuracy reflects the percentage of correctly classified examples. Precision indi-
cates the proportion of true positives among the model’s positive predictions. Conversely,
Recall measures the model’s ability to identify all positive instances within the dataset.
The F1-Score (also known as F1-measure) combines precision and recall into a single met-
ric, providing a balanced view of the model’s performance when dealing with imbalanced
datasets, where the ratio between positive and negative examples might be uneven. The
confusion matrix is used to calculate these measures.

Table 3: Performance metrics used
S/N Performance Metrics Formula
(Total Number of Correct prediction)

(Actual test data)

x 100

1 Accuracy or

(TP + TN)
(TP 4+ TNFP + FN)
TP

2 Precisi TP
recision TP - TP
TP

TP + FN
(2 x Precision x Recall)

(Precision + Recall)

3 Recall

4 F1-Measure
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4.3 Experimental Results and Discussion

During the evaluation phase, the models that were developed during the training phase are
used in making predictions on data from the evaluation set. The classification algorithm
utilizes the feature vectors that were extracted from the CSV file to perform classification.
To assess the model’s effectiveness, performance metrics such as accuracy, F1 score, recall,
and precision are used. The results are analyzed and presented using a classification report
and a confusion matrix. Specifically, the classification report displays various performance
metrics while the confusion matrix details the correctly classified instances alongside the
misclassified examples for each class. Figure 5 and Figure 6 depict the model’s output
confusion matrix without and with data augmentation respectively.

glioma_turmor

e ringIama_turmor

Figure 5: Confusion matrix of the proposed model without data augmentation.

The classification report in Table 4, presents the performance measures used in the
study. The results indicated that using image augmentation improves the model’s per-
formance significantly. The accuracy, precision, recall, and Fl-score obtained with data
augmentation were 98.47%, 99%, 98%, and 99%, respectively. These values are superior to
those obtained without data augmentation, which were 96.3%, 97%, 96%, and 96%, respec-
tively.

This improvement is particularly evident in the reduction of misclassified tumor in-
stances, especially for the glioma type, as observed in the confusion matrices in Figure 5
and Figure 6.

5 Discussion

The experimental results demonstrate the effectiveness of the proposed deep learning
model for brain tumor classification from MRI images. Without any data augmentation,
the model achieved an overall accuracy of 96.3%, precision of 97%, recall of 96%, and F1-
score of 96%. These performance metrics indicate the model’s strong ability to correctly
classify different brain tumor types from the input image data.
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Table 4: Performance comparison of optimized logistic regression with and without data

augmentation
Metric  Class With Augmentation Without Augmentation
Accuracy  Overall 98.47% 96.33%
Glioma tumor 0.99 0.97
Precision Meningioma tumor  0.96 0.94
No tumor 1.00 0.97
Pituitary tumor 1.00 0.99
Glioma tumor 0.99 0.98
Recall Meningioma tumor  0.99 0.93
No tumor 0.98 0.98
Pituitary tumor 0.98 0.97
Glioma tumor 0.99 0.97
Fl-Score Meningioma tumor  0.97 0.94
No tumor 0.99 0.97
Pituitary tumor 0.99 0.98

Figure 6: Confusion matrix of the proposed model with data augmentation.
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However, the results were further improved by incorporating data augmentation tech-
niques during training. With augmented data, the model’s accuracy increased to 98.47%,
with 99% precision, 98% recall, and 99% Fl-score. Data augmentation helps expose the
model to more variations of the training data. This increase in data diversity acts as a

regularizer to reduce overfitting and improve the model’s generalization capability.

Analyzing the confusion matrices provides additional insights. Without augmentation
(Fig. 4b), the model struggled the most with glioma tumors, incorrectly classifying 6 cases.
After data augmentation (Fig. 5b), the total number of misclassified cases dropped from
12 to only 5, significantly reducing errors across all tumor categories. This reinforces how

augmentation helped the model learn more robust and discriminative features.
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To evaluate the impact of our optimization approach, we conducted a comparative
analysis between standard Softmax Regression and our optimized version. The standard
Softmax Regression without optimization achieved an accuracy of 97.8%, with two mis-
classifications in the 'no tumor’ category. In contrast, our optimized Softmax Regression
model achieved a higher accuracy of 98.4%. This improvement, while seemingly modest,
is statistically significant and crucial in clinical applications where misdiagnoses can have
severe consequences.

While the proposed deep feature fusion on an optimized Softmax regression approach
achieved state-of-the-art performance for brain tumor classification, certain limitations
should be acknowledged.

First, the current work focused solely on tumor type classification. However, for com-
prehensive decision support, an integrated system incorporating additional clinically rel-
evant tasks like tumor segmentation, grading, and survival prediction would be highly
valuable. Extending the framework to these complementary tasks is an important direc-
tion for future research. Secondly, while data augmentation improved performance, more
advanced augmentation strategies tailored for medical imaging could potentially extract
further gains in accuracy and robustness. Techniques like elastic deformations, noise in-
jections, and blended augmentations aimed at simulating real-world variations may be
beneficial. Finally, the deep learning model used off-the-shelf architectures pre-trained on
natural images. Exploring neural architecture search customized for medical imaging data
or training models from scratch could uncover more optimal representations specific to the
brain tumor domain.

Despite these limitations, the current study provides a strong baseline demonstrating
the synergies between deep learning and machine learning for this high-stakes clinical ap-
plication. Addressing the outlined limitations through subsequent research can pave the
way for real-world deployment and impact.

5.1 Comparative Analysis with Previous Study

Table 5 presents a comparison of the accuracy of the proposed approach with that of other
similar methods. The table shows the accuracy of four different methods in addition to the
proposed method. The results show that the suggested model outperforms the other four
models in terms of accuracy, with GoogleNet + SVM being the second-best model. The
superior performance of the proposed model can be attributed to the fine-tuned ResNet-
50’s ability to extract relevant features and the ability to optimize the SR algorithm with
appropriate parameters for high-dimensional classification tasks. Therefore, the proposed
model is highly efficient in terms of performance.

Table 5: Comparison with Previous Study

Ref Proposed Method Accuracy
Yazdan et al. (2022) Multi-Scale CNN (MSCNN) 91.2
Kang et al. (2021) (DenseNet-169 + Shufflenet + MnasNet) feature + SVM RBF  93.7
Rasool et al. (2022) GoogleNet + Fine tuning 93.1
Rasool et al. (2022) GoogleNet + SVM 98.1
Proposed Method without Optimization =~ ResNet50 + SR 97.88
Proposed Method ResNet50 + Optimized SR 98.4

*  https://ejournal.ittelkom-pwt.ac.id /index.php/infotel
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6 Conclusion

This study introduced a novel hybrid deep-learning classification method that utilizes
transfer learning through feature extraction. This methodology leverages transfer learn-
ing by utilizing a pre-trained ResNet-50 model for feature extraction with optimized SR
to identify and categorize brain tumor types in MRI images. The proposed approach au-
tomates the classification process of MRI brain image datasets into four classes, including
meningioma, glioma, pituitary tumor, and no tumor. The experimental findings indicated
that the suggested method outperforms existing techniques achieving an impressive accu-
racy of 98.4%. These findings suggest that this approach has the potential to be a valuable
diagnostic tool for radiologists, assisting them in identifying suspicious regions within the
brain. While the initial performance is encouraging, further research is necessary to reduce
the model size. This optimization would be crucial for deploying the model in real-time
medical diagnosis systems.
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