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Abstract: The pyranometer sensor measures Global Horizontal Irradiance (GHI), a key
parameter for weather analysis and photovoltaic prediction. GHI data is essential for as-
sessing solar power generation performance in distributed energy systems. However, GHI
sensor data often contains missing values and outliers due to measurement errors. This
research aims to develop a GHI prediction model that handles missing values and outliers
to improve solar radiation prediction. Data preprocessing includes imputation of missing
values using linear, polynomial, and Piecewise Cubic Hermite Interpolating Polynomials
(PCHIP), and outlier elimination using Random Sample Consensus (RANSAC). Previous
studies show that Long Short-Term Memory (LSTM) models outperform traditional ma-
chine learning in predictions. This study compares LSTM models with and without data
preprocessing. The results show that PCHIP imputation achieved the best performance
with a Mean Absolute Error (MAE) of 39.708 W/m2, Root Mean Square Error (RMSE) of
76.224 W/m2, Normalized Root Mean Square Error (NRMSE) of 0.433, and a Coefficient
of Determination (R2) of 0.903. After outlier elimination, the imputation yielded an MAE
of 44.377 W/m2, RMSE of 86.738 W/m2, NRMSE of 0.500, and R2 of 0.886, with RANSAC
eliminating 100% of outliers. The LSTM model with preprocessing showed better results,
with an MAE of 42.863 W/m2, RMSE of 82.396 W/m2, NRMSE of 0.396, and R2 of 0.918.
This study provides an effective GHI prediction model to support solar power plant oper-
ations by addressing missing values and outliers.
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1 Introduction

The pyranometer sensor, part of the Automatic Weather Station (AWS), measures solar
radiation intensity as Global Horizontal Irradiance (GHI), which is used for research pur-
poses and predicting weather conditions [1]. Solar radiation predictions are essential for
providing information on weather, climate, and solar energy potential in an area, support-
ing solar panel installations for renewable energy [2]. In the solar power system, a solar ra-
diation measurement system is installed to monitor solar radiation conditions to determine
the performance of the generating system [3]. Weather variables, especially solar radiation,
impact the uncertainty of a solar energy generation, posing challenges for integrating into
the evolving electricity grid. Fluctuations in photovoltaic output can affect power stability
and economic benefits. Thus, accurate solar radiation prediction is crucial for optimizing
distributed energy networks [4].

Ground measurement sensor data has the weakness of low quality data [5]. Low data
quality from the missing values filled in inaccurately results an invalid analysis [6]. Lost
values in sensor data occur due to maintenance, data logger errors, communication fail-
ures, hardware damage, and power exhaustion [7,8]. Additionally, outliers, which are data
points that significantly deviate from the usual pattern, can negatively affect the quality of
sensor data [9]. Handling of outliers can be identified using statistical methods and then
replacing or deleting outliers [10]. In response to sensor data issues, this research devel-
oped a solar radiation prediction model that includes data preprocessing techniques such
as imputing missing values and removing outliers. These preprocessing steps enhance
data quality by addressing missing values and eliminating anomalies [11]. For statistical
methods in time series analysis, the estimation of missing values is required. This method
enables the development and enhancement of prediction models [12]. Research related to
the imputation of missing values can improve prediction performance with the best evalu-
ation at Mean Absolute Error (MAE) 117.81 and Root Mean Square Error (RMSE) 201.58 at
60% of missing values in the dataset and improve the performance of the previous dataset
with 80% missing values using the Imputed algorithm Gate Recurrent Unit (IGRU) [13].
In addition, outlier handling contribute to the fact that the model without outliers is the
most appropriate model compared to the initial data with outliers producing higher coef-
ficient of determination (R2) [14]. Research shows that the best method for predicting op-
timal planting days based on weather forecasts used Histogram Gradient Boosting Regres-
sor, achieving R2 of 0.938 and MAE of 77.689. This model employed One-Class SVM for
outlier removal and Random Forest for imputation. The data preprocessing significantly
improved results compared to the initial model without imputation and outlier removal,
which had an R2 of 0.723 and MAE of 111.645 [15].

The prediction of solar radiation data achieving accurate results depends on choosing
the right architecture to handle dynamic modeling data, determining the right algorithm,
selecting input variables, and adjusting model hyperparameters [16]. Several studies show
the advantages of Long Short-Time Memory (LSTM) in improving predictions using time
series statistical techniques. Previous research regarding the GHI prediction model using
Bidirectional LSTM has the best performance among Multilayer Perceptron (MLP), Ran-
dom Forest, Extreme Gradient Boosting (XGboost), and linear regression [17]. In previous
research, the LSTM prediction model for univariate GHI produced greater MAE, RMSE,
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and NRMSE than multivariate [18, 19]. Based on these findings, prior research concen-
trated on univariate models, which showed lower performance compared to multivariate
models. Additionally, previous studies did not address data preprocessing techniques for
handling missing values and outliers. Moreover, the data utilized was limited to a sin-
gle measurement location in Andhra Pradesh, India, covering only a one-year period with
five-minute intervals [18].

This research introduces a novel approach of LSTM-based model for predicting Global
Horizontal Irradiance (GHI) using two different datasets. The first dataset (Model 1)
does not address missing data or outliers, while the second dataset (Model 2) uses ad-
vanced preprocessing techniques. Model 2 applies imputation methods—linear interpo-
lation, polynomial interpolation, and Piecewise Cubic Hermite Interpolating Polynomi-
als (PCHIP)—chosen for their effectiveness in improving performance metrics like Mean
Absolute Error (MAE), Root Mean Square Error (RMSE), Normalized Root Mean Square
Error (NRMSE), and R2. It also removes outliers using the Random Sample Consensus
(RANSAC). The study compares the LSTM model’s performance between the preprocessed
(Model 2) and non-preprocessed (Model 1) datasets. This new approach helps the Indone-
sian Meteorology, Climatology, and Geophysics Agency (BMKG) enhance their prediction
models and supports solar power plants in improving energy management.

2 Research Method

This research focuses on a specific scope, with the following limitations: First, it is limited
to GHI data from the pyranometer sensor at the AWS installed at BMKG’s Climatology
Station in Yogyakarta, Indonesia. Second, the study uses hourly GHI data from 2022–2023
as a single parameter. Third, data preprocessing involves cleaning through the imputa-
tion of missing values and outlier removal. The study compares solar radiation prediction
models with and without data preprocessing to develop univariate prediction model using
the LSTM algorithm. The research methodology phases are outlined in Figure 1.

Figure 1: Research methodology diagram.

The methodology involves several detailed stages. First, GHI data from the pyra-
nometer sensor at BMKG’s Climatology Station in Yogyakarta was collected to create the
dataset. Two prediction models were then developed: one without data preprocessing
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(LSTM Model 1) and another with preprocessing (LSTM Model 2), which involved filling
missing values using the best interpolation method (linear, polynomial, or PCHIP) and re-
moving outliers with RANSAC. Both models were trained using GHI data, with hyperpa-
rameters such as the number of neurons, epochs, and window size optimized. The trained
models were validated using test data to assess performance. Finally, the performance of
both models was evaluated and compared using metrics like MAE, RMSE, NRMSE, and
R2.

2.1 Data Collection

The GHI data used in this study were obtained from AWS in the Yogyakarta Special Re-
gion, which is managed by the BMKG Climatology Station. GHI parameter data is one of
the AWS measurement parameters of the Yogyakarta Climatology Station, which is oper-
ated in the observation equipment park. AWS data records weather parameters with data
transmission intervals every ten minutes for the period January 2022 to December 2023.
From these weather parameters, one solar radiation parameter is taken. The solar radia-
tion parameter obtained from AWS is the average GHI per ten minutes in Watts/m2 units.
Microsoft Excel and Python3 are needed to support processing and analysis of the dataset.

2.2 Data Preprocessing

A collection of average solar radiation data at ten-minute intervals was obtained from this
equipment for the period 2022 to 2023. By calculating an average GHI value for one-hour
intervals, the raw data processing was completed. Hourly intervals were carried out to
optimize the prediction model as in previous research from [19]. Then, the process flow for
implementing the data preprocessing of filling in missing values and eliminating outliers
is shown in Figure 2. The dataset simulation scenario is made into two models. The first
model is to train the LSTM model by simulating the missing values with 500 random data
in the data row range of 3000-6000 and simulating outlier values with 500 random data in
the data row range of 6000-9000. The second model uses a dataset that has been improved
with data cleaning. The second model is used to train a prediction model with the condi-
tion that the dataset has been corrected for outliers using RANSAC and filling in missing
values using the best test results on MAE, RMSE, NRMSE, and R2 values between linear,
polynomial, and PCHIP interpolation methods. The dataset is then split into components
for training and testing data. Referring to [20], the LSTM model which produced a good
RMSE of 6.42 used the ratio 70% of train data and 30% of test data.

Figure 2: The flow of data cleaning stages in data preprocessing.
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2.3 Interpolation

Linear interpolation is a method for performing linear calculations based on the straight-
line distance at the values of two given points. This method estimates the values that lie
between these points, and is the simplest way to replace missing values [21]. The linear
interpolation function can be written as (1) [22].

f(x) = f(x0) +
f(x1)− f(x0)

(x1 − x0)(x1 − x0). (1)

The equation (1) explains the x indicates the independent variable, where x1 and x0 are the
known values of the independent variable and f(x) is the variable dependent on the x of
the independent variable. Then, polynomial interpolation can be used as an approximation
function in numerical analysis problems because of its simple structure, so that polynomi-
als can be used effectively. The function values at known points form a polynomial of
degree less than or equal to n, this polynomial is called an interpolation polynomial. The
equation of that method is in (2) [23].

P (x) = a0 + a1x+ a2x
2. (2)

The equation (2) has a0, a1, a2 which are coefficients calculated based on the data points
which want to interpolate. This polynomial can be used to estimate the y value from x
values between x0, x1, and x2. In addition, the PCHIP is a third-order polynomial that has
the characteristic of preserving shape by simply matching the first-order derivative of a
data point with its neighbors, before and after) [24]. The mathematical equation of PCHIP
interpolation is given as in (3) and (4).

P (x) = h1 + (x− xi)h2 + (x− xi)
2h3 + (x− xi)

3h4, (3)

h1 = fi, h2 = ḟi, h3 =
3Ci+ 1

2
− ˙fi+1 − 2ḟi

δxi+ 1
2

, h4 =
2Ci+ 1

2
− ˙fi+1 − ḟi

δxi+ 1
2

(4)

where xi ≤ x ≤ xi+1, the data point is denoted by fi, and for 1 ≤ I ≤ n, ḟi is the slope
of the xi. The data point node value and its derivative values assigned to the data point
node are used to calculate the PCHIP [25].

2.4 Random Sample Consensus

The RANSAC estimates mathematical model parameters from a set of data divided into
inliers and outliers [26]. This method is used to obtain a model based on linear regres-
sion, carried out on input data which may include samples that have outliers. The basic
assumption of this algorithm is that the measured Ymeasured(x) depends on a set of outlier
independent variables added to it in (5).

Ymeasured(x) = Youtlier−free(x) +N (5)

where Youtlier−free(x) is the expected measurement values that are free from noise and N
is the internal noise that influences the measured outlier value. RANSAC assumes that
outlier follow the assumption of having a constant distribution across all measurement
values [27].
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2.5 Long Short-Term Memory

LSTM developed to study long-term time dependencies of analysis. This is an effective
model in dealing with sequential data problems containing long-term dependencies. Time-
series prediction, sentiment analysis, and machine translation are a few uses for LSTM [18].
By employing memory cells with a range of gates, LSTM is intended to retain long-term
temporal relationships. Figure 3 shows the single cell LSTM memory architecture and this
picture is adapted from [28].

Figure 3: Single cell memory architecture in LSTM (Reproduced from [28]).

The equations related to the different gates of LSTM cells are discussed with gate de-
scriptions [29]. For example, at time t, with the current input xt and the previous hidden
state h(t− 1), the current values of the forget gate ft, input gate it, cell state ct, output gate
ot, and hidden state ht are calculated as follows (6)-(10).

Forget gate(ft) = σ((wf [ht−1, xt]) + bf ) (6)

Input gate(ft) = σ((wi[ht−1, xt]) + bi) (7)

Cell gate(ft) = tanh((wc[ht−1, xt]) + bc) (8)

Output gate(ft) = σ((wo[ht−1, xt]) + bo) (9)

Hidden gate(ft) = ot ∗ tanh(ct) (10)

Weight matrices in this case are wf , wi, wc, and wo. The biases for each gate are bf , bi,
bc, and bo. The tanh and sigmoid(σ) are the activation function; symbol ∗ denotes multipli-
cation of elements, while + denotes addition.

2.6 Model Prediction LSTM

The study proposes a paradigm for univariate LSTM model-based GHI prediction. The
time series data of the GHI measurement are ready for testing the LSTM model following
data preprocessing and partitioning. Using a sliding window approach, the prediction
makes estimates about future time stages by taking into account those of the past. The
input and output vectors for the univariate LSTM model are shown in Figure 4.
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Figure 4: The prediction model using LSTM.

The input vector for the univariate prediction model only takes the GHI variable into
account. Figure 4 explains that t indicates the current time step, where t − 1 and t − 2 are
the lag values or window sizes, and t + 1 and t + 2 indicate the next step. In the LSTM
model, hyperparameter settings are required, such as hidden layers, batch size, epochs,
window size, and neurons. The initial settings shown in Table 1 describes the hyperparam-
eters set for the univariate LSTM model. Hyperparameters in the LSTM determined based
on the results of initial experiments as in Table 1. To determine other hyperparameters,
the research tried variations of the activation function, optimizer, hidden layer, batch size,
epoch, window size, and neuron to determine the best metric evaluation values.

Table 1: Initial setting of LSTM hyperparameters

Hyperparmeter Value
Optimizer Adam
Hidden Layer 1
Batch Size 5
Epoch 25
Neuron 50
Window Size 3
Activation Function tanh

2.7 Model Evaluation

RMSE and MAE are two standard metrics used in model evaluation. For a sample of n ob-
servations with a value of y (yi, i = 1, 2, 3, . . . , n) and ŷ is the value of the model prediction
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or estimation result. The RMSE calculation is shown in (11).

RMSE =

√∑n
i=1(yi − ŷi)2

n
(11)

Taking the root does not affect the relative ranking of the models, but produces a metric
with the same units as y, which easily represents normally distributed errors. A common
statistical tool for assessing model performance in studies on climate, air quality, and me-
teorology is the root mean square error (RMSE) [30]. The next evaluation model is MAE
with the calculation formula in (12).

MAE =
1

n

n∑
i=1

|yi − ŷi|2 (12)

MAE is a metric used to determine the absolute difference between the predicted and
actual values. The range of MAE is (0,+∞); the smaller the MAE, the higher the accuracy
of the predicted model. One of the advantages of MAE is that it is identical to the original
data [31]. After that, this study uses NRMSE to compare data sets with different scales
because it uses normalization. The NRMSE calculation is given in (13).

NRMSE =
RMSE
ȳi

(13)

The symbol ȳi is the average of observations. NRMSE does not differentiate between
negative and positive errors and extreme errors will be penalized by NRMSE. The NRMSE
value must be kept as small as possible for the estimation to be considered successful [19].
Evaluation also uses the R2. The R2 value is calculated in the range (−∞, 1) according to
the reciprocal relationship between the actual value and the predicted value. The worst
value range is −∞ and the best value is +1. The equation (14) shows the calculation of the
R2 value.

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳi)2
(14)

The element ŷi is the predicted value, yi is the observation value, ȳi is the average ob-
servation value, and n is the total data sample. The R2 number indicates the percentage of
variance in the dependent variable that can be predicted based on the independent vari-
able [32].

3 Results

The one-hour interval was chosen for the GHI data prediction model because it is consis-
tent with prior research data that yields a good evaluation of the prediction model utilizing
solar radiation data with RMSE values of 71.25 and MAE 46.00 [33]. In testing data com-
pleteness, the amount of data recorded was 16.843, with the number of missing values
being 677, which shows a percentage of data completeness of 96.14%. The dataset that
will be used to the prediction model is 16.843 after elimination of missing values. Figure 5
shows the GHI dataset becomes data with an interval of one hour from raw data with an
interval of ten minutes.
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Figure 5: One-hour interval GHI solar radiation dataset.

Dataset at one hour intervals on sensor measurements is carried out using an average
technique of measuring every ten minutes of data. In this case, if there are missing values
then there should be six data in one hour, then the average number of values carried out
is reduced. For example, if there are only three data recorded, then the divider becomes
three. In cases where there are more than six rows of missing data, it will be a missing
value which is then eliminated. At the data preprocessing stage, the collected dataset has
100% completeness and no outliers are detected based on the sensor measurement value
range specifications of 0-2000 W/m2. In testing, a dataset scenario with missing values
and outliers is created by collecting random samples from the dataset and replacing them
with missing values and outliers in order to construct a model for filling in the gaps and
removing outliers. The dataset simulation scenario is explained in Table 2.

Table 2: Dataset simulation scenarios

Dataset Missing Values Outliers Number of Data
Model 1 500 500 16343
Model 2 0 0 16843

The scenario in the GHI dataset is determined with 500 missing data values randomly
in the data row range of 3000-6000 and simulated outlier values with 500 random data in
the data row range of 6000-9000. The percentage of missing data and outliers is 5.937% of
the dataset. The results of the GHI dataset scenario model 1 with missing sample values
and outliers are shown in Figure 6.

Data samples that have missing values are in the data period range 3000 – 6000. The
interpolation approach is used to fill in missing values, and the resulting MAE, RMSE,
NRMSE, and R2 evaluation values are tested toward the original values. Then, the dataset
that has outliers is in the data period range 6000 – 9000. Outlier values are then eliminated
using the RANSAC method, then validated with the percentage of outlier values that can
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Figure 6: The GHI dataset with missing values and outliers scenario.

be eliminated using data completeness testing Following the removal of outliers, the out-
lier values become missing values, which are subsequently filled in using interpolation.
When validating with MAE, RMSE, NRMSE, and R2, the initial value of the missing item
is utilized. The dataset is then used to train and test the prediction model using the LSTM
algorithm, with the best evaluation value for filling in the missing data determined from
the linear interpolation, polynomial interpolation, and PCHIP interpolation methods.

3.1 Interpolation Testing

Scenario model 1 is utilized in the interpolation tests to fill in the GHI dataset’s missing
values. Using RANSAC, Scenario model 2 is utilized to fill in any missing data from the
outcomes of outlier reduction. The results of testing on each GHI dataset scenario will be
compared and further analyzed using prediction model evaluation metrics for interpola-
tion results in scenario model 1 (MAE 1, RMSE 1, NRMSE 1, and R2 1) then scenario model
2 (MAE 2, RMSE 2, NRMSE 2, and R2 2). Figure 7 illustrates MAE, RMSE, NRMSE, and R2

evaluation of interpolation for two models.

Figure 7: Evaluation metrics of interpolation for model 1 and model 2.
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Testing to fill in the missing values in model 1 using interpolation methods produced
an evaluation matric based on linear interpolation with MAE 42,227 W/m2, RMSE 76,583
W/m2, NRMSE 0.435, and R2 0.902. Then, polynomial interpolation produces MAE 44.135
W/m2, RMSE 84.891 W/m2, NRMSE 0.482, and R2 0.879. Furthermore, PCHIP interpola-
tion obtained MAE 39.708 W/m2, RMSE 76.224 W/m2, NRMSE 0.433, and R2 0.903. From
the results of the interpolation test, PCHIP shows the best performance in missing val-
ues filling in the GHI dataset. In the model 2, The dataset which had outliers was 100%
successful in being eliminated using the RANSAC to become missing values, the dataset
was interpolated to fill in those missing values. Linear interpolation produces MAE 47.302
W/m2, RMSE 87.917 W/m2, NRMSE 0.507, and R2 0.882. Furthermore, polynomial inter-
polation shows MAE 50.683 W/m2, RMSE 97.592 W/m2, NRMSE 0.562, and R2 0.855. Then,
PCHIP interpolation obtained MAE 44,377 W/m2, RMSE 86,738 W/m2, NRMSE 0.500, and
R2 0.886. From the test results of the interpolation tests, the PCHIP was chosen to fill in
the missing values from the outlier elimination results in the dataset because it has the best
performance.

3.2 RANSAC Testing

In the case of outliers in the GHI dataset, the outliers are handled in two stages. First, the
outliers’ removal stage uses the RANSAC by randomly detecting outliers in the dataset,
then the detected outliers are deleted from the dataset. The Figure 8 shows the result
of outlier removal by RANSAC. In this research, five experiments were carried out with
500 samples of outlier values that could be eliminated, including 328 with a percentage of
65.6%, 467 with a percentage of 93.4%, 270 with a percentage of 54%, 476 with a percentage
of 95.2%, and 500 with a percentage of 100%.

Figure 8: Completeness check in outlier removal by RANSAC.

3.3 LSTM Testing

Testing of the GHI prediction model was carried out using the LSTM with scenarios model
1 and model 2. The first model uses the dataset which has a random sample of missing
values in the data row range 3000 – 6000 and outliers in the data row range 6000 – 9000.
The second model shows the preprocessed dataset that was cleaned up by using RANSAC
to eliminate outliers and PCHIP interpolation to fill in missing values. The dataset is di-
vided into training data and testing data. To run the algorithm and conduct LSTM testing,
hyperparameters need to first be configured. This research focuses on the GHI prediction
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model to get the best results by carrying out experiments on the combination of the best
hyperparameter values in epoch, batch size, and hidden layer. In the initial setup, hidden
layer 1, epoch 25, batch size 5, window size 3, and neuron 50. The results that have the best
performance for the prediction model in two models are displayed in Figure 9.

Figure 9: The result of LSTM prediction for model 1 and model 2.

Based on Figure 9, the blue line shows the predicted value from training data and the
orange line shows the prediction result on test data. Also, the red line on the graph shows
the observed value of the pyranometer sensor measurement for GHI. The results of testing
the prediction model in model 1 using a simulated dataset that has random missing values
which are then eliminated and the dataset has outliers that exceed the sensor measurement
range at a threshold of 0 W/m2 to 2000 W/m2. Furthermore, the results of testing the pre-
diction model in model 2 using a dataset that has been interpolated on missing values and
eliminated outliers using RANSAC. Figure 10 shows the results of the prediction model on
train data by the various window sizes.

Figure 10: The result of the LSTM prediction model on train data using different of window
sizes.

Metric evaluation using MAE, RMSE, NRMSE and R2 testing of the performance of
the LSTM prediction model was carried out using train data based on changes in window
size. The training data for model 1 has outlier values and the data is reduced because
there are missing values. Meanwhile, model 2 has been improved with data preprocessing.
The best performance is found in window size 12. MAE, RMSE, NRMSE values in dataset
model 2 have decreased compared to model 1. Then, R2 in dataset model 2 has increased
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compared to model 1. This shows that the performance of model 2 with data preprocessing
techniques can improve the performance of predictions. The performance in the model 2
test data have decreased compared to model 1. Figure 11 displays the results of the LSTM
prediction model’s evaluation on test data by various window sizes.

Figure 11: The result of LSTM prediction model on test data using different window sizes.

Metric evaluation using MAE, RMSE, NRMSE, and R2 tests on the performance of the
LSTM prediction model were also applied to test data with a data portion of 30% of the
dataset. The model 1 test data has outlier values and eliminates missing values. Mean-
while, model 2 has been improved by data preprocessing. In the test data, model 2 values
for MAE, RMSE, and NRMSE have decreased. Then, R2 increases. This shows that the per-
formance of model 2 is better than model 1 on test data. The best performance window size
is found at a value of 9. After conducting hyperparameter analysis with previous related
research, this research summarizes the process of determining the best hyperparameters
for changes in batch size, epoch, neurons, hidden layers, and the window size. Table 3
is an evaluation of the performance of the LSTM prediction model on the GHI model 1
dataset without using data preprocessing.

In determining the best hyperparameters, this research uses the technique of averaging
the MAE and RMSE values in model 1 and model 2. The average MAE and RMSE values
in two models with the lowest values are used to determine the best. In Table 2 is a dataset
that has data reduction due to missing values and outliers. The results of LSTM testing
on these dataset conditions produced the best performance evaluation at window size 12
with MAE 110,475, RMSE 264,191, NRMSE 0.861 and R2 0.830 on the training data and at
window size 9 with MAE 50.539, RMSE 87.882, NRMSE 0.419 and R2 0.908 on the testing
data. Table 4 is an evaluation of the performance of the LSTM prediction model on the GHI
model 2 dataset using data preprocessing.

The results of LSTM testing on dataset using data preprocessing on model 2 have better
performance than model 1 without data preprocessing with MAE 27,581, RMSE 55,838,
NRMSE 0.304 and R2 0.956 on train data and MAE 42.863, RMSE 82.396, NRMSE 0.396,
and R2 0.918 on test data. Based on the average MAE and RMSE on model 1 and model
2, the LSTM test results of the GHI prediction model get the best hyperparameter at batch
size 15, epoch 75, neurons 50, hidden layer 3, and window size 12.
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Table 3: Performance Evaluation of LSTM Model 1

Hyper- Value
Model 1 (Dataset with missing values and outlier)

Data Training Data Testing
parameter MAE RMSE NRMSE R2 MAE RMSE NRMSE R2

Batch Size 5 206.814 602.088 1.962 0.114 74.210 108.167 0.516 0.861
10 207.803 600.646 1.957 0.118 77.442 110.750 0.529 0.854
15 203.187 596.789 1.944 0.130 69.052 100.412 0.479 0.880
20 213.158 605.776 1.974 0.103 86.875 120.772 0.577 0.826

Epoch 25 203.187 596.789 1.944 0.130 69.052 100.412 0.479 0.880
50 196.447 597.843 1.948 0.127 64.644 98.334 0.469 0.885
75 196.895 597.289 1.946 0.128 63.511 95.309 0.455 0.892

100 198.525 602.293 1.962 0.114 72.041 104.740 0.500 0.869
Neuron 50 196.895 597.289 1.946 0.128 63.511 95.309 0.455 0.892

75 198.457 598.163 1.949 0.126 66.745 100.176 0.478 0.881
100 196.610 598.623 1.950 0.124 65.426 98.735 0.471 0.884

Hidden 1 196.895 597.289 1.946 0.128 63.511 95.309 0.455 0.892
Layer 2 198.711 593.440 1.933 0.139 62.935 97.257 0.464 0.887

3 195.761 592.081 1.929 0.143 58.319 96.048 0.459 0.890
4 202.267 593.388 1.933 0.140 63.254 103.491 0.494 0.872

Window 3 195.761 592.081 1.929 0.143 58.319 96.048 0.459 0.890
Size 6 207.703 576.175 1.878 0.189 53.302 90.935 0.434 0.902

9 198.555 515.577 1.681 0.351 50.539 87.882 0.419 0.908
12 110.475 264.191 0.861 0.830 63.709 122.479 0.585 0.822

4 Discussion

This research uses linear, polynomial, and PCHIP interpolation to fill in missing values in
the GHI dataset and the RANSAC method to help retrieve outlier data in the GHI dataset,
then eliminate and also fill in missing values using linear interpolation, polynomial inter-
polation, and PCHIP interpolation. This interpolation method was chosen to fill in missing
values because it has better capabilities than the simple method, namely the mean. Based
on previous research showing that on missing data 5% of the dataset, the interpolation
method has an RMSE evaluation value of 16.818, which is better than the mean method
with an RMSE value of 167.756 [34]. The test results are in accordance with the theory
contained in the research of [35] which states that the simplest method is to define a piece-
wise linear function between each number of points. Although linear interpolation does
not result in smooth curves, linear methods are quick and simple to use. In order to get
around this, PCHIP is used to manage the overshoot problem—that is, the occurrence of
the interpolation curve beyond the actual value of the data interpolated between two given
data points—and preserve the monotonicity of the points on the interpolation curve. Fur-
thermore, the technique yields interpolation curves that are smoother. The dataset is then
utilized to train an LSTM prediction model after it has been filled in and outliers removed.
In the RANSAC test, it shows the completeness of the outlier data that was successfully
removed in a sample of 500 outliers. The results with the completeness of the outlier data
that was successfully removed 100% were selected to be filled with missing values using in-
terpolation. The interpolation technique is used to fill in missing values in the GHI dataset
after the elimination process.
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Table 4: Performance Evaluation of LSTM Model 2

Hyper- Value
Model 2 (Dataset with missing values and outlier)

Data Training Data Testing
parameter MAE RMSE NRMSE R2 MAE RMSE NRMSE R2

Batch Size 5 52.677 95.843 0.521 0.869 52.781 91.293 0.440 0.900
10 54.231 97.149 0.528 0.866 54.251 92.538 0.446 0.897
15 50.747 94.550 0.514 0.873 50.625 90.483 0.436 0.901
20 55.295 98.578 0.536 0.862 55.463 94.395 0.455 0.893

Epoch 25 50.747 94.550 0.514 0.873 50.625 90.483 0.436 0.901
50 49.661 93.911 0.510 0.875 49.107 89.612 0.432 0.903
75 49.326 93.283 0.507 0.876 48.539 88.852 0.428 0.905

100 50.619 94.020 0.511 0.874 49.901 89.455 0.431 0.904
Neuron 50 49.326 93.283 0.507 0.876 48.539 88.852 0.428 0.905

75 51.645 94.734 0.515 0.872 50.941 90.014 0.434 0.902
100 49.935 94.385 0.513 0.873 49.479 89.935 0.433 0.903

Hidden 1 49.326 93.283 0.507 0.876 48.539 88.852 0.428 0.905
Layer 2 49.138 93.790 0.510 0.875 47.841 88.432 0.426 0.906

3 49.224 93.352 0.507 0.876 48.194 88.504 0.426 0.906
4 48.112 93.428 0.508 0.876 47.401 88.603 0.427 0.905

Window 3 49.224 93.352 0.507 0.876 48.194 88.504 0.426 0.906
Size 6 44.059 82.626 0.449 0.903 44.100 83.426 0.402 0.916

9 42.801 81.744 0.445 0.905 42.863 82.396 0.396 0.918
12 27.581 55.833 0.304 0.956 50.082 100.763 0.484 0.878

By adjusting the hyperparameters for the optimizer, activation function, number of neu-
rons, epochs, batch size, window size, and hidden layers, the LSTM prediction model was
evaluated. Train and test data are used to evaluate the LSTM following the completion of
the hyperparameter phase. In this study, it was determined that the train data had a portion
of 70% and the test data had a portion of 30% the of GHI dataset. After conducting data
training with 70% in the initial period, data testing is carried out on 30% at the end of the
period sequentially. After testing on 30% of the data in the final period, the test results were
validated using the evaluation MAE, RMSE, NRMSE, and R2. Adam optimizer is used in
this study to extract neural network parameters. It is an optimization approach based on
stochastic gradients. Furthermore, it has demonstrated an efficacy in resolving sparse gra-
dient domains and a deep machine learning issues. Consequently, when working with
LSTM networks—which typically have several times more parameters than simple neural
networks—this optimizer is a good option. Adam optimizer is more efficient at this task
than standard stochastic gradient descent (SGD), which requires a lot of computing power
to optimize such networks [36]. Then, the tanh activation function was chosen because it
has the best LSTM prediction model performance between sigmoid and ReLU. Research
for epoch 100 resulted in an accuracy of 80.1% for tanh, 78.81% for ReLU, and 75.76% for
sigmoid [37].

In testing the LSTM model, the batch size testing is carried out from the smallest value
to the largest to improve the performance of the LSTM. Batch size 5 to 15 experienced a
gradual increase in performance, then from 15 to 20 experienced a decrease. This is the
same as a previous research which shows that increasing the batch size does not necessar-
ily improve the performance of the LSTM [38]. Next, the best epoch value is 75 from 25
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and 50, then at 100, performance decreases. As in earlier studies on solar radiation LSTM
prediction models, the test findings on the influence of epoch values show that continu-
ously increasing the epoch does not necessarily improve the performance of the prediction
model [19]. Furthermore, there was no discernible difference in the performance of LSTM
when the number of neurons was increased or decreased. It is same as the research in [39].
In this study, the performance of LSTM did not increase with the continuous addition of
hidden layers. Previous studies have shown that the adjustment ability improves with
the number of hidden layers, however, as layers rise, the structure becomes more complex
and challenging to train, and an overfitting scenario may occur, which would degrade the
generalization ability [40]. And the last, test on the window size show that increasing the
window size value can improve the performance of the prediction model, but a large win-
dow size can cause an increased computational load due to the addition of the calculated
values [19]. On the other hand, based on research in [41], when the window size is ex-
panded from one to fifteen days, the RMSE of the LSTM model significantly drops. The
RMSE then begins to rise until the window size reaches sixty days. The RMSE decreases
with increasing window size when the window size is greater than sixty days.

The best influence on the window size in the prediction model’s performance was de-
termined by analyzing the outcomes of LSTM model testing. With training data, window
size 12 yields the greatest results; with testing data, window size 9 yields the best results
for both models 1 and 2. For training data, the second rank performance is window size
9, and for testing data, it is window size 6 for two models. On the training data, the third
rank performance is window size 6, and on the testing data, window size 3 for two models.
On the training data, the last rank is window size 3, and on the testing data, it is window
size 12 for two models. The results indicate that the model’s performance significantly
declines if the window is too large. Previous research related to solar radiation prediction
also shows the performance of the best univariate model with NRMSE 0.213652 using the
largest window size. This result shows that solar radiation depends on past observations.
In this study, the best NRMSE result was 0.304 and could not exceed previous research [19].
In the MAE and RMSE results for train data at window size 12, it was found that the per-
formance was better than the solar radiation prediction performance in previous research
in [33].

5 Conclusion

Testing for the imputation of missing values at the data preprocessing was carried out using
the interpolation method to produce MAE, RMSE, NRMSE, and R2 evaluations, according
to the findings of the research that was conducted in a prediction model using the data pre-
processing stage on the GHI dataset using the LSTM. The best is PCHIP interpolation from
linear and polynomial interpolation. In the test of filling in missing values from data that
successfully eliminated outliers using RANSAC, the best test results were also obtained in
PCHIP interpolation. The results of PCHIP interpolation on the GHI dataset were selected
for use in training and testing prediction models using the LSTM algorithm. Outlier elimi-
nation testing using the RANSAC method resulted in five trials to obtain the percentage of
data completeness. In the fifth experiment, all outliers were successfully eliminated. The
elimination results in the fifth experiment were chosen to be used as a dataset that will
be processed to fill in missing values and as a dataset for the GHI prediction model. The
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test results of the GHI solar radiation prediction model using the LSTM for datasets that
underwent data preprocessing with the best evaluation of MAE, RMSE, NRMSE, and R2

for train data and test data had better performance than the prediction model for datasets
that did not undergo data preprocessing. The best evaluation was obtained from the LSTM
prediction model using hyperparameters with a batch size 15, epoch 75, neuron 50, hid-
den layer 3, and window size 12. Future research can carry out deeper analysis regarding
hyperparameters in the prediction model using LSTM for prediction data results that have
negative values for the GHI solar radiation parameter. In addition, research using a multi-
variate model is carried out selectively on parameters that contribute significantly to solar
radiation as input in order to anticipate excessive memory load in the model computing
process.
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