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Abstract: Hospital asset monitoring systems face significant challenges in managing par-
tially occluded medical equipment, which affects inventory management and operational
efficiency. Conventional object detection methods have shown limitations in accurately de-
tecting occluded medical equipment, potentially leading to asset management inefficien-
cies. This study presents an integrated framework that combines Generative Adversarial
Networks (GAN) inpainting with YOLOv8 to improve the detection accuracy of partially
occluded medical equipment. The proposed system was evaluated using three distinct
training configurations of 500, 750, and 1000 epochs on a complete medical equipment
dataset. The experimental results indicate that the 1000-epoch GAN model demonstrated
superior reconstruction performance, achieving a Peak Signal-to-Noise Ratio (PSNR) of
39.68 dB, Structural Similarity Index Measure (SSIM) of 0.9910, and Mean Squared Error
(MSE) of 7.0030. Furthermore, the integrated YOLOv8-GAN framework maintained robust
detection performance with an F1-score of 0.933, comparable to the 0.938 achieved with
unoccluded original images. The detection confidence scores improved at higher epochs,
ranging from 0.824 to 0.861, suggesting improved performance with extended training du-
ration. The findings demonstrate that the integration of GAN inpainting with YOLOv8
effectively enhances occluded object detection in hospital environments, offering a viable
solution for improved asset monitoring systems.

Keywords: computer vision, deep learning, generative adversarial networks, occluded ob-
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1 Introduction

The advancement of computer technology has driven rapid development in various fields,
including digital imagery. One of its significant applications is computer vision, which
allows computers to recognize objects as humans visually. This object detection system
can be used in various places or organizations, one of which is in a hospital. Object de-
tection in hospitals can be done for asset monitoring of goods contained in the hospital,
which is essential for efficient hospital operations. In hospital environments, efficient asset
tracking, identification, and maintenance are fundamental to ensure optimal resource uti-
lization and service quality [1]. However, in object detection, one of the main challenges is
occlusion, where some objects are covered by other objects so that they are only partially
visible. Occlusion becomes a significant problem in environments such as hospitals, where
asset monitoring is often disrupted by stacks of goods or changes in asset location without
explicit notice.

Object detection plays an important role in asset monitoring in a hospital environment.
Assets are one of the main factors in organizational performance, so assets must be prop-
erly inventoried, identified, performed legal audits, and valued [2, 3]. The use of cameras,
images, and technology such as YOLO has been used to identify assets within a hospi-
tal [4]. However, occlusion challenges in object detection make it difficult to monitor assets
optimally. In this context, approaches based on Generative Adversarial Networks (GANs)
have begun to be applied to improve object detection accuracy, especially in addressing the
occlusion problem.

Several studies have demonstrated the successful integration of GAN with object de-
tection algorithms to handle occlusion. The research by [5] used a single shot detector
(SSD) and deep convolutional GAN (DCGAN) to improve pedestrian detection despite ob-
structions. Another research by [6] combined Faster R-CNN with Generative Adversarial
Occlusion Network (GAON) to produce more accurate object detection in obstructed object
conditions. Both studies show that GAN can improve object detection by improving the
quality of training data and model prediction results.

GAN technology has also been applied to image inpainting tasks to recover missing or
obstructed parts of an image. In the context of image inpainting, the generator in GAN
generates the missing part of the image concerning the existing context. At the same time,
the discriminator tries to distinguish between the original image and the inpainted image.
The research by [7]) mentioned that the AU-GAN approach they developed has shown
a significant improvement in the quality of the recovered image, especially in terms of
texture and structure. In addition, the research by [8] utilized an inverse GAN that enables
inpainting of results with more consistent and realistic semantics, especially for handling
more significant image corruptions.

In line with this research, GAN methods that focus on inpainting have proven effective
in overcoming object occlusion. The GAN inpainting technique enables the recovery or
filling of missing or obstructed parts of the object in the image, thus improving detection
accuracy. YOLO offers a rapid and efficient approach to real-time object detection that can
be particularly beneficial in environments such as hospitals where speed and accuracy are
essential [9]. In this study, the researchers developed an approach that integrates GAN in-
painting with YOLOv8 to improve object detection, particularly in situations where objects
are partially occluded. This integration is expected to produce a more reliable model for
detecting objects under various conditions, especially in a hospital environment.
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The literature review on object detection in hospital environments has grown with more
and more studies incorporating deep learning techniques, particularly GAN and the YOLO
algorithm, to detect obstructed objects. A recent study by [10] discussed a deep learning-
based image inpainting method to repair obstructed images more accurately. In addition,
the study by [11] showed that the transfer learning approach in YOLOv8 can improve the
accuracy of landmark detection in complex medical images. Another study conducted
by [12] found that the YOLOv8 model enhanced with deep learning-based preprocessing
can improve bone fracture detection up to 10% better than conventional methods. By in-
tegrating GAN inpainting to fill the obstructed part of the image, this research is expected
to improve the accuracy of hospital asset detection, as demonstrated in the GAN research
on medical image inpainting by [7]. The addition of this study provides a more complete
understanding of the relevance and effectiveness of the approach used in this investigation.

Therefore, this study aims to evaluate the effectiveness of using GANs to improve the
detection accuracy of obstructed objects, with a specific application to hospital asset moni-
toring. By developing a model that combines YOLOv8 with GAN inpainting, this research
is expected to contribute significantly to more accurate and efficient object detection in
hospital environments. In this study, we will develop and evaluate an obstructed object
detection method by integrating YOLOv8 and GAN. We will focus on improving the ac-
curacy of obstructed object detection by utilizing GAN Inpainting to generate occlusion
directly on the feature map generated by the YOLOv8 intermediate layer. By combining
these approaches, the resulting model is expected to perform better in detecting obstructed
objects under various conditions.

The primary contributions and novelty of this research are threefold. First, we present a
novel integration framework that combines GAN inpainting with YOLOv8 specifically op-
timized for hospital asset detection, addressing a critical gap in existing occlusion-handling
approaches for medical equipment monitoring. Second, we introduce an improved train-
ing methodology that utilizes progressive learning with multiple epoch configurations
(500, 750, and 1000) to optimize the balance between reconstruction quality and detec-
tion accuracy. Third, we contribute a comprehensive evaluation framework that combines
traditional image quality metrics (PSNR, SSIM, MSE) with object detection performance
measures (F1-score, accuracy, confidence) to provide a holistic assessment of the system’s
effectiveness in real-world hospital scenarios. Unlike previous studies that focused on gen-
eral object detection or image reconstruction separately, our approach uniquely combines
these elements to create a more robust and practical solution for hospital asset management
systems. The experimental results demonstrate that our integrated approach performs bet-
ter in handling the detection of occluded medical equipment, with PSNR values of 39.68
dB and SSIM of 0.9910, exceeding existing methods in reconstruction quality and detection
accuracy.

2 Research Method

This research was carried out in several stages. This research begins with the collection of
images of medical equipment. The dataset that has been prepared is then annotated with
ground truth bounding boxes for each image object and divided into training, validation,
and testing sets. The data is then processed by resizing the images to the exact size of 256 ×
256 pixels and converting the images into PyTorch tensor format. In the next stage, a GAN
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Figure 1: Sample dataset.

model is created for the inpainting process on the obstructed object image. Evaluation is
performed after the inpainting process using PSNR, SSIM, and FID to assess the quality
of the inpainting image. A pre-trained YOLOv8 model is integrated into the system to
perform object detection. The YOLOv8 model detects objects in the original image, the ob-
structed image, and the image generated by the GAN model. Furthermore, evaluation and
calculation of metrics, including precision, recall, accuracy, and mean Average Precision
(mAP), are performed to analyze the model’s performance.

2.1 Dataset and Training Configuration

The dataset utilized in this study comprises 1,200 high-resolution medical equipment im-
ages collected from various hospital settings. The image collection includes essential hospi-
tal assets, including glucometers, patient monitors, infusion pumps, ventilators, and diag-
nostic imaging equipment, providing a representative sample of standard medical devices
that require monitoring. The data set was systematic divided using stratified sampling,
with 70% (840 images) allocated for model training, 20% (240 images) designated for val-
idation and the remaining 10% (120 images) reserved for testing purposes. The sample
dataset can be seen in Figure 1.

Several data augmentation techniques were implemented to enhance model robustness
and address potential overfitting concerns. These include random horizontal flipping with
a probability coefficient of 0.5, random rotation within a constrained range of 15 degrees,
brightness adjustments within a factor range of 0.8 to 1.2, and contrast variations between
0.8 and 1.2. These enhancement parameters were selected based on empirical testing and
aligned with established practices in the medical image processing literature [13].

The hyperparameter configuration for the GAN training framework was determined
through systematic empirical evaluation and theoretical considerations from previous re-
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search. The learning rate was 0.01 for both the generator and discriminator networks, fol-
lowing best practices in GAN stability optimization [13]. The Adam optimizer was config-
ured with momentum parameters β1 = 0.5 and β2 = 0.999, specifically chosen to address
the gradient variability characteristic of GAN training processes [10]. A batch size of 16 was
selected as an optimal compromise between computational efficiency and training stability,
supported by findings from recent medical imaging studies [11].

Additionally, a progressive learning strategy was implemented to optimize the model’s
ability to handle varying degrees of occlusion. This approach gradually increased the com-
plexity of generated masks during the training phase, beginning with simple rectangular
occlusions and advancing to more complex irregular patterns.

The implementation of these methodological components was systematically docu-
mented and validated through experimental trials to ensure the reproducibility and reli-
ability of the results. This comprehensive approach to data set preparation and training
configuration provides a robust foundation for the subsequent evaluation of the perfor-
mance of the model in hospital asset detection tasks.

2.2 Inpainting GAN

The GAN architecture of inpainting implements a sophisticated coarse to fine approach to
image restoration of medical equipment, a technique well-regarded for preserving image
integrity through dual stage processing [14]. The architecture of inpainting GAN can be
seen in Figure 2. This architecture uses a dual-stage generator network and discriminator
to enhance image quality. The proposed system architecture introduces a novel integra-
tion of inpainting and object detection designed explicitly for hospital asset monitoring
applications. The architecture implements a sequential processing pipeline in which im-
ages of occluded medical equipment undergo GAN-based reconstruction prior to YOLOv8
detection processing. This approach addresses the fundamental challenge of occlusion in
hospital settings while maintaining detection accuracy.

Specifically, the generator network operates in two stages: a coarse generator for initial
image completion and a refinement generator for detail enhancement. The coarse generator
processes a 4-channel input, which combines the masked image (3 channels) and a binary
mask (1 channel), using an encoder-decoder structure that follows a progressive learning
strategy to stabilize training and improve structural fidelity [15]. The encoder consists of
four convolutional layers with feature dimensions that progressively increase (4, 64, 128,
256, 512), using 4 × 4 kernels and stride-2 operations, each followed by LeakyReLU activa-
tion and batch normalization, which are essential for stable training in complex inpainting
tasks [16]. The decoder mirrors this structure with transposed convolutions that gradually
reduce feature dimensions (512, 256, 128, 64, 3), utilizing ReLU activations and batch nor-
malization, culminating in a Tanh activation for normalized output generation, following
the practice of coarse-to-fine detail enhancement [17].

The refinement stage incorporates local and global context to improve the perceptual
quality of restoration [10, 17]. Processes a 7-channel input formed by concatenating the
coarse output, the original image, and the mask, utilizing a convolutional architecture sim-
ilar to the coarse generator but with enhanced feature processing capabilities. The decoder
of this refinement generator processes a 1024-dimensional feature space derived from fea-
ture fusion between the two generator stages, allowing more detailed and context-sensitive
image completion [18].
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Figure 2: Architecture inpainting GAN.

The discriminator network employs a patch-based architecture with four convolutional
layers (3, 64, 128, 256, 1), using LeakyReLU activations and batch normalization, and con-
cludes with a sigmoid activation for real/fake classification. The combined loss function
integrates adversarial and reconstruction loss components to balance realism and struc-
tural accuracy in the generated images. Binary Cross Entropy is used for adversarial loss,
while the distance L1, weighted by a factor of 100, is applied to the reconstruction loss,
reinforcing structural integrity in the output of the image [14, 16].

Training optimization is handled by Adam Optimizer with parameters β1 = 0.5 and
β2 = 0.999, and a learning rate of 0.0001 for both networks, consistent with the best prac-
tices outlined in GAN-based inpainting studies [17]. Training data preprocessing includes
resizing images to 256 × 256 pixels and normalizing to a range of [-1, 1], with randomly
centered rectangular masks covering 30-50% of the image area. This masking strategy is
in line with established methods for ensuring robust model performance on incomplete
data [15].

The training procedure incorporates regular monitoring of generator and discriminator
losses, with sample generation and model checkpointing every 100 steps to track progress
and ensure model stability. This approach has shown effectiveness in progressively trained
GAN frameworks.

2.3 Model Detection with YOLO

In this stage, the preparation of the YOLO model is carried out by downloading and load-
ing the pretrained weights of the YOLOv8 model. The compatibility of the YOLO model
with the medical device image dataset is checked and the object classes that are relevant
and aligned with the dataset are identified. The system processes the input image by re-
sizing it to the standard dimension of 256 × 256 pixels while maintaining the aspect ratio
through padding. This preprocessing step ensures consistent input dimensions while pre-
serving the spatial information of the original image, as exemplified in [19] on segmenta-
tion of diabetic retinopathy, which used a similar strategy to maintain accuracy at various
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scales. The model generates predictions on multiple scales, with each prediction including
bounding-box coordinates, objectness scores, and class probabilities. This process aligns
with the research by Meza et al. [12] in bone fracture detection that emphasizes the impor-
tance of image size preprocessing so that spatial information can be retained.

Post-processing includes nonmaximum suppression to eliminate over-detection, with a
confidence threshold that defines the minimum acceptable detection score. This technique
corresponds to the approach used by Balaha et al. [20], who applied non-maximum sup-
pression to optimize the detection accuracy in neuroimaging images in the case of COVID-
19.

Next, the YOLO model is integrated into the inpainting system by modifying the ar-
chitecture to process the inpainting images. Rashmi et al.’s [11] study on cephalometric
landmark annotation shows the importance of customizing the YOLOv8 model to process
variations in medical images. Integrating the model into a more extensive system allowed
it to perform the detection task on three variants of each image: the original unmodified
image, the occlusion-masked image, and the unpainted image generated by GAN. Object
detection parameters, such as confidence threshold and non-maximum suppression, were
set for performance optimization. YOLO detection results, which include bounding box
coordinates, class labels, and confidence scores, were mapped for further evaluation.

2.4 Evaluation Method

The evaluation method for this project is divided into three main components: Image Qual-
ity Evaluation, Model Metric Evaluation, and Training Loss Evaluation.

2.4.1 Evaluation image quality

This image quality evaluation aims to measure the extent to which GAN can produce qual-
ity images in the context of inpainting, especially for occluded objects.

The Mean Squared Error (MSE) is calculated as the average squared differences be-
tween the original and generated images, providing a pixel-level measure of the overall
difference. A lower MSE value indicates that the inpainting result is closer to the original
image. For example, research by Rakibe and Patil [21] demonstrates that lower MSE values
in GAN-driven inpainting correlate with improved accuracy in filling in medical image
details, highlighting MSE as an effective metric to evaluate inpainting performance. The
calculation is shown in (1).

MSE =
1

MN

M∑
n=0

N∑
m=1

[ĝ(n,m)− g(n,m)]
2 (1)

The Peak Signal-to-Noise Ratio (PSNR) measures the ratio between the maximum pos-
sible signal power and the noise power, serving as a key indicator of image quality [22].
Higher PSNR values reflect better inpainting quality by showing less noise in the gener-
ated image compared to the original. The calculation is shown in (2).

PSNR = 10 log10

(
peakval2

MSE

)
(2)

The Structural Similarity Index (SSIM) measures the similarity between two images by
adjusting for luminance, contrast, and structural composition, with scores ranging from -1
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to 1. A score of 1 indicates perfect structural similarity, which is essential in evaluating
the GAN ability to preserve the structural details of the original image. Research by [23]
and [24] has shown that GAN-based inpainting methods often achieve high SSIM scores,
confirming that the inpainted image closely retains the structure and texture of the original,
even when large portions are occluded. The calculation is shown in (3).

SSIM(x, y) =
(2µxµy + c1) (2σxy + c2)(

µ2
x + µ2

y + c1
) (

σ2
x + σ2

y + c2
) (3)

2.4.2 Evaluation metrics model

This evaluation focuses on the performance of the YOLOv8 model in detecting objects that
have been painted by GAN. Given its advanced features tailored to real-time object detec-
tion tasks, evaluating the effectiveness of YOLOv8 on such datasets is essential.

Precision is the ratio of true positives to the number of positive predictions, as shown
in (4). This metric reflects the model’s ability to identify objects that genuinely exist in
the inpainted dataset. The research by [25] shows that YOLOv8 has a high precision rate
in detecting objects in complex tasks, such as estrus detection in animals, where accurate
identification is crucial.

Precision =
TP

TN
(4)

Recall is calculated as the ratio of correct positive predictions to total positive objects
in the data, as shown in (5). This metric assesses the model’s ability to detect all available
target objects. The research by [26] noted that YOLOv8 exhibited a high recall rate in a
defect inspection task, demonstrating the robustness of the model in detecting relevant
objects even in synthetically modified images. In addition, YOLOv8 still shows high recall
rates in real-time applications that involve GAN result data [27].

Recall =
TP

TP + FN
(5)

Accuracy is the relationship between the correct predictions and the total number of
predictions, as shown (6). This metric provides an overview of the model’s performance in
correctly classifying objects.

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

The F1-score is a metric used in the evaluation of the classification model to balance
the two main metrics, Precision and Recall, as shown in (7). It is especially useful in cases
of imbalanced data, where there is a large difference between the amount of positive and
negative data, or when balancing accuracy and completeness of detection is a priority.

F1-score = 2× Precision×Recall

Precision+Recall
(7)

2.4.3 Train loss

This evaluation measures the effectiveness of GAN training, both generators and discrimi-
nators, to produce realistic inpainting images. Generator loss consists of two main compo-
nents: adversarial loss and reconstruction loss. Adversarial loss is critical to encouraging
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the generator to produce images that challenge the discriminator to distinguish them from
authentic images. Reconstruction loss aims to minimize the difference between the orig-
inal image and the painted image. This component improves the fidelity of the resulting
image so that it appears seamlessly integrated with its original context. Discriminator loss
evaluates the discriminator’s ability to distinguish the original image and the synthetic im-
age generated by the generator. The higher the discriminator loss, the better its ability to
distinguish the original and fake images.

3 Results

This study examines potential solutions to occlusion challenges in hospital asset monitor-
ing systems, where medical equipment can be partially obscured by surrounding objects
or stacking items. Previous research has documented limitations in asset tracking and in-
ventory management effectiveness within hospital environments due to factors related to
occlusion. The proposed methodology integrates GAN-based inpainting with YOLOv8 in
a two-stage approach, first attempting to reconstruct potentially occluded portions of med-
ical equipment images, and then conducting object detection analysis on the processed
images. The subsequent sections present empirical findings regarding the application of
this methodology to occlusion-related challenges in hospital asset detection systems.

3.1 Inpainting GAN Model Experiment Result

The experimental results suggest progressive improvements in the inpainting capabilities
of the GAN model in different training epochs. During the implementation phase, a dataset
of medical equipment images was utilized and the model was trained using a coarse-to-fine
generator architecture paired with a dual discriminator. Original images were masked with
a rectangular center region that occupies approximately 30-50% of the image area to sim-
ulate potential scenarios of medical equipment image restoration. This masking approach
was designed to provide a consistent evaluation metric while preserving contextual infor-
mation in the peripheral regions of the images.

The masking process in this study employed a systematic approach to simulate realis-
tic occlusion scenarios in medical equipment images. A single square-shaped mask was
applied centrally to each image, occupying between 30-50% of the total image area. This
central positioning was specifically chosen to ensure consistent occlusion of key equipment
features. For images with dimensions of 256 × 256 pixels, the mask dimensions ranged
from approximately 140 × 140 pixels (representing 30% coverage) to 180 × 180 pixels (rep-
resenting 50% coverage). The mask was implemented programmatically as a binary mask,
where the masked regions were assigned a value of 1 and the unmasked regions a value of
0. This central positioning strategy was particularly relevant for images of medical equip-
ment, as critical identifying features such as display screens, control panels, and distinctive
hardware components are typically located in the central region of the device. The mask-
ing approach was applied consistently across the entire dataset during training and testing
phases to ensure standardized evaluation conditions, creating challenging but realistic sce-
narios for testing the system’s reconstruction capabilities.

Qualitative analysis of the results presented in Figure 3 indicates improvements as the
training progressed through various stages. At 500 epochs, the model exhibited basic
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Figure 3: Dataset original image, masked image, and generated image.

structural reconstruction capabilities, generating the general shape and primary features
of medical equipment. However, the generated images at this stage exhibited artifacts and
demonstrated limitations in fine detail preservation, particularly in regions with complex
textures or sharp transitions.

As training progressed to 750 epochs, observations indicated an improvement in the
quality of the generated content, with increased consistency in texture synthesis and more
precise reproduction of the detailed features of medical equipment, including display
screens, buttons, and connectors. Notable improvements were observed at 1000 epochs,
where the model showed enhanced performance in structural coherence and detail preser-
vation. The images generated at this stage exhibited high fidelity to the original medical
equipment, with precise reproduction of fine details and textures.

The model effectively maintained consistency between the generated regions and the
surrounding unmasked areas, creating transitions seamlessly integrated with the original
image. It was particularly evident in the glucose meter example, where the model recon-
structed the LCD, navigation buttons, and device housing with apparent precision and
natural appearance.

Quantitative analysis of model performance indicated a progressive improvement in
key metrics throughout training epochs. The loss curves showed a consistent decrease
in generator and discriminator losses, suggesting effective optimization of the underlying
data distribution. The visual quality of the generated images correlates with these quanti-
tative improvements, as indicated by the increasing structural similarity between the gen-
erated and original images. The model’s capacity to preserve the specific characteristics of
various types of medical equipment while reconstructing masked regions suggests poten-
tial efficacy in learning and applying domain-specific features, which may be relevant for
applications in medical image processing.
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Figure 4: Generator loss and discriminator loss 500 Epoch.

3.1.1 Generator loss and discriminator loss

The training dynamics of the medical equipment inpainting GAN revealed significant pat-
terns of loss value of the generator and discriminator in various epoch configurations. The
implementation used a sophisticated loss computation mechanism in which the generator
network utilized a dual component loss function. This function combined adversarial loss,
which evaluates the generator’s ability to produce realistic images, and reconstruction loss,
implemented as L1 loss, to measure pixel-wise differences between generated and authen-
tic images. The loss of reconstruction was weighted by 100 to emphasize structural pre-
cision in the painting of medical equipment. The discriminator loss was calculated using
the average of two Binary Cross-Entropy (BCE) Loss functions, one for authentic images
and another for generated images, utilizing detached generated images to ensure proper
backpropagation.

The network demonstrated notable progress in the 500-epoch configuration at Figure 4,
beginning with an initial generator loss of 186.3380 and a discriminator loss of 0.7163. In the
final epoch, these values improved significantly to 6.2769 and 0.6100, respectively, repre-
senting a 96.6% reduction in generator loss. The 750-epoch configuration exhibited further
improvements, starting with slightly lower initial values (generator loss: 180.3204, discrim-
inator loss: 0.6928) and achieving final values of 4.3708 and 0.5974, respectively, marking a
97.5% reduction in generator loss at Figure 5.

The 1000-epoch configuration yielded the most comprehensive improvements in net-
work performance. Starting with initial values of 171.4569 for generator loss and 0.7482
for discriminator loss, the network achieved final values of 4.0461 and 0.4816, respectively,
representing a 97.6% reduction in generator loss. This configuration demonstrated the low-
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Figure 5: Generator loss and discriminator loss 750 Epoch.

est final discriminator loss, indicating optimal network stability and refinement to generate
realistic images of painted medical equipment.

Analysis of the progression of the loss value across different epoch configurations re-
veals several key insights. The discriminator consistently maintained stable loss values
between 0.48 and 0.71 in all configurations, demonstrating robust performance that distin-
guishes real images from generated images. The generator showed significant improve-
ment across all configurations, with increased training epochs leading to progressively
lower final loss values. The marginal improvement observed between 750 and 1000 epochs
(approximately 7.4% reduction in generator loss) suggests approaching optimal conver-
gence, as can be seen in Figure 6. These findings indicate that, while satisfactory results
can be achieved in 500 epochs, extended training provides incremental improvements in
generation quality. However, training beyond 1000 epochs may yield diminishing returns
for this medical equipment inpainting application.

3.1.2 Evaluation metrics quality

The evaluation of the image quality metrics was performed using three standard measures:
Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), and Mean Square
Error (MSE). These metrics were analyzed in different training configurations of 500, 750,
and 1000 epochs to assess the performance in the glucometer image classification. The
results suggest improvements in image quality metrics as the number of epochs increased.

At 500 epochs, the model recorded a PSNR value of 34.49 dB, an MSE of 23.0987, and
an SSIM of 0.9704, as shown in Figure 6 and Table 1. The SSIM map at this stage showed
areas of structural similarity, with predominantly red regions indicating high similarity
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Figure 6: Generator loss and discriminator loss 1000 Epoch.

Table 1: Detailed metric quality image PSNR, MSE, and SSIM
Epochs PSNR (dB) MSE SSIM

500 34.49 23.0987 0.9704
750 38.99 8.2077 0.9857

1000 39.68 7.0030 0.9910

and scattered blue areas showing lower similarity, particularly in the lower portion of the
glucometer image.

Changes were observed in all metrics at 750 epochs as in Figure 8. The PSNR increased
to 38.99 dB, potentially indicating enhanced signal quality, while the MSE decreased to
8.2077, suggesting a possible reduction in image reconstruction errors. The SSIM value
increased to 0.9857, which may indicate better structural preservation. The corresponding
SSIM map showed more uniform red coloration, potentially indicating improved structural
consistency across the image, with some areas of lower similarity remaining in the lower
portion of the glucometer representation.

The metrics showed further changes at 1000 epochs Figure 9. The PSNR reached 39.68
dB, while the MSE decreased to 7.0030. The SSIM value increased to 0.9910. The SSIM map
at this stage showed a more uniform distribution of similarity values, with red regions
predominant in the visualization and some variations in the lower section. The MSE dis-
tribution graphs across epochs showed concentrated error values, while the metrics trend
graphs indicated an inverse relationship between PSNR and SSIM values.

The changes in these metrics across epochs suggest that the model’s capacity to main-
tain structural integrity and reduce noise in glucometer classification could improve with
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Figure 7: Metric PSNR, SSIM, MSE class glucometer 500 Epoch.

Figure 8: Metric PSNR, SSIM, MSE class glucometer 750 Epoch.
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Figure 9: Metric PSNR, SSIM, MSE class glucometer 1000 Epoch.

extended training. This observation is supported by the reduction in MSE values by ap-
proximately 69.6% from 500 to 1000 epochs, while the SSIM showed an increase of 2.06
percentage points. These findings suggest potential improvements in the preservation of
structural details while reducing reconstruction errors, though further validation in diverse
scenarios would be beneficial to establish broader applicability for glucometer classification
tasks.

3.2 YOLOv8 Detection Object Experiment Result

Based on the experimental results conducted in this study, there are three test scenarios
to detect objects of medical equipment in hospitals: First, the "original" scenario where
YOLOv8 detects medical equipment image datasets without occlusion and achieves excel-
lent performance. Second, the "masked" scenario in which YOLOv8 is used to detect image
data sets with occlusion (partially blocked) results in decreased performance, indicating
challenges in detecting obstructed objects. Third, the "generated" scenario that integrates
YOLOv8 with inpainting GAN to detect images with occlusion datasets, where the system
successfully maintains detection performance nearly equivalent to the original scenario as
training epochs increase, demonstrating the effectiveness of the combined YOLOv8 and
inpainting GAN approach in addressing occlusion issues in medical equipment detection.

In the Experimental YOLOv8 Object Detection Results section, this study conducted
comprehensive evaluations in three different epoch settings (500, 750, and 1000) to ana-
lyze object detection performance using YOLOv8 with and without GAN integration. The
results showed consistent patterns across all epoch variations, with the original YOLOv8
model achieving an F1-score and accuracy of 0.938, establishing a baseline for object detec-
tion performance. Implementing the masked approach decreased performance, with F1-
scores of 0.889 and accuracy of 0.867, indicating challenges in detecting partially occluded
or masked objects.
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Figure 10: Metric F1 score, accuracy and confidence 500 Epoch.

Figure 11: Metric F1 score, accuracy and confidence 750 Epoch.

Figure 12: Metric F1-score, accuracy and confidence 1000 Epoch.
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Integrating Inpainting GAN with YOLOv8 (the generated approach) demonstrated de-
tection performance with an F1-score and accuracy of 0.933, comparable to the performance
on original unmodified images. This performance remained consistent across different
epoch settings, as illustrated in Figure 10, Figure 11, and Figure 12, suggesting the robust-
ness of the GAN-enhanced detection system. The confidence scores provided additional
information, with the original approach showing 0.896, the GAN-generated results rang-
ing from 0.824 to 0.861 in epochs, while the masked approach showed 0.760.

The performance of the system demonstrated stability across epochs. From 500 to 750
epochs in Figure 10 to Figure 11, the F1-scores and accuracy metrics remained constant,
while the confidence scores of the generated approach improved from 0.824 to 0.859. At
1000 epochs in Figure 12, the confidence in the approach increased to 0.861, maintaining
a similar F1-score and precision. This stability suggests that the integration of YOLOv8 +
Inpainting GAN achieves optimal performance early in training and maintains it consis-
tently.

The results indicate the effectiveness of the GAN-based approach in addressing masked
or occluded object detection limitations. Although the masked approach showed lower
performance in all metrics, the GAN-integrated solution achieved results comparable to
the original image detection performance. It suggests that Inpainting GAN effectively re-
constructs missing or masked image portions, allowing YOLOv8 to maintain detection ac-
curacy in challenging scenarios. The difference between original and generated approaches
(approximately 0.005 in both F1-score and accuracy) indicates potential viability for real-
world applications where object occlusion or image degradation present common chal-
lenges.

3.3 Comparison and Scientific Contribution

The image quality comparison is presented in Table 2. Table 2 shows significant differences
between the various models. The SRGAN model [28] has a PSNR value of 24.51 and an
SSIM of 0.6773, indicating a relatively lower image quality than other models. The ISGAN
model [29] shows better performance, with a PSNR of 36.58 and an SSIM of 0.9652, indi-
cating improved image quality and structural similarity to the original image. Meanwhile,
the GAN inpainting model trained for 1000 epochs showed the highest performance, with
a PSNR of 39.68 and an SSIM of 0.9910. These values indicate that the GAN inpainting
model can produce images with an excellent signal-to-noise ratio and high structural sim-
ilarity. The consistent improvement in performance metrics among these models indicates
that the GAN inpainting approach, especially with more extended training, is the most
effective in overcoming image occlusion challenges and maintaining high-quality medical
device detection in a hospital environment.

Table 2: Comparisan Metric Quality Image PSNR and SSIM
Epochs PSNR (dB) SSIM
SRGAN 24.51 0.6773
ISGAN 36.58 0.9652

Inpainting GAN 39.68 0.9910
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4 Discussion

Integrating GAN-based inpainting with YOLOv8 to address occlusion challenges in hos-
pital asset monitoring shows promising results that align with our initial hypothesis.
Through extensive experimentation in different epoch configurations, the combined ap-
proach shows significant potential to maintain detection accuracy even when medical
equipment is partially obscured. The performance of the GAN model peaked at 1000
epochs, achieving a PSNR of 39.68 dB, SSIM of 0.9910, and MSE of 7.0030, which surpasses
the performance metrics reported in similar medical imaging studies, such as Rashmi et al.’s
work on cephalometric landmark annotation that achieved a PSNR of 35.2 dB and SSIM of
0.945. The improvement in image quality directly supported object detection performance,
with YOLOv8 maintaining comparable F1-scores between original and GAN-reconstructed
images (0.933 for generated approach versus 0.938 for original images). These results align
with [19] research on segmentation of diabetic retinopathy, which similarly demonstrated
the effectiveness of deep learning approaches in handling partially obscured medical im-
agery. However, several limitations must be acknowledged in our study. First, train-
ing data were limited to controlled laboratory conditions, which may not fully represent
the complex and dynamic nature of real hospital environments. Second, system perfor-
mance was evaluated for rectangular occlusions, while real-world scenarios often involve
irregular-shaped obstructions.

Furthermore, the computational resources required for the real-time painting of GAN
could pose implementation challenges in resource-constrained healthcare settings. Despite
these limitations, the stability of detection performance in different epoch configurations
and the system’s ability to maintain high detection accuracy even with significant occlu-
sion (30- 50% masked areas) suggest that the integrated approach could provide a practical
solution for monitoring hospital assets. However, further validation in diverse real-world
settings would be beneficial in fully establishing the system’s operational reliability.

Although our current implementation shows promising results, several areas warrant
further investigation for practical deployment in hospital environments. Future research
should focus on implementing conditional GANs to handle diverse occlusion patterns,
developing data augmentation strategies for irregular occlusions, and creating standard-
ized evaluation protocols for real-world performance evaluation. In addition, addressing
computational overhead through model compression techniques and establishing trans-
fer learning protocols for new equipment types will be crucial to successful deployment
in resource-constrained healthcare settings. Despite these areas for improvement, the
marginal performance difference between original and GAN-reconstructed images (0.005
in F1-score) suggests strong potential for real-world applications where object occlusion
presents persistent challenges.

5 Conclusion

This study investigated the challenge of occlusion in hospital asset monitoring systems,
where detection of medical equipment can be compromised by partial obstruction from
other objects or stacked items. By integrating GAN-based inpainting with YOLOv8, we
propose an approach that addresses the limitations of conventional object detection sys-
tems in handling occluded medical equipment. The experimental results across different
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epoch configurations (500, 750, and 1000) indicate improved image reconstruction quality
and object detection performance. The GAN model showed optimal performance at 1000
epochs, with a PSNR of 39.68 dB, SSIM of 0.9910, and MSE of 7.0030, suggesting an im-
proved capability in reconstructing occluded portions of medical equipment images. This
reconstruction quality facilitates subsequent detection, as demonstrated by the YOLOv8 in-
tegration, maintaining high-performance metrics across all configurations, with F1-scores
and accuracy rates of 1.000 for original, masked, and GAN-generated images while main-
taining confidence scores above 0.9. These findings suggest that the proposed approach
may help address occlusion challenges in detecting medical equipment, potentially provid-
ing hospital administrators with an improved solution for asset monitoring when equip-
ment is partially obscured. This approach could contribute to improving the efficiency of
hospital asset management systems, although more research may be needed to validate
these results in diverse real-world settings.
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