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Abstract: The health insurance claim in hospitals involves selecting specific ICD-10 codes
for primary diagnosis texts. With rising claim volumes, the need for faster, more accurate
coding is critical. This study develops a deep learning model to classify diagnosis texts into
relevant ICD-10 codes using 9,982 original medical records from a national referral hospi-
tal under the Indonesian Ministry of Health. The classification method employs a BIGRU
layer architecture, known for its effectiveness in handling sequential data, such as diagnosis
texts. BIGRU operates bidirectionally, enhancing the model’s ability to capture the context
from both past and future sequences. In this architecture, the BiGRU layer serves as the
classification layer, stacked above the BERT layer, which functions as the vector embedding
layer, converting text into numerical representations for the model. The results of the study
demonstrate a promising solution for codifying primary diagnosis texts, achieving a preci-
sion of 82.18% and a recall of 81.59%. Despite the strong performance of the model, further
improvements are possible. Interestingly, the study also observed that the size of the class
volume per ICD-10 code is not the only factor affecting classification performance, as some
classes with smaller volumes exhibited better classification results. However, merging rare
classes did not improve performance and even worsened it, suggesting that better ways to
handle underrepresented classes are needed. Experiments with different embedding lay-
ers, such as IndoBERT and BioClinical BERT, and hyperparameter tuning yielded minimal
performance gains, suggesting the need for alternative optimization strategies.
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1 Introduction

The financial sustainability of healthcare facilities, such as hospitals, is closely related to the
effectiveness of insurance claim management, which is crucial to maintaining stability [1].
A significant portion of hospital revenue is generated from insurance claims, including
those from both the private and public sectors. To improve public welfare, the Indonesian
government introduced the National Health Insurance program, BPJS Health [2]. Hospitals
that collaborate with BPJS Health use a retrospective payment method, in which service
costs are calculated based on case-based financing determined by the Ministry of Health
[3], [4]. However, delays in the processing of claims can result in delayed payments, which
can negatively impact hospital operations [5]. Therefore, processing claims promptly is
crucial to maintain smoothness.

Accurate codification of diagnoses and medical procedures is crucial in grouping them
appropriately within the prospective payment method in the healthcare system [6, 7].
Specifically, the accurate assignment of ICD-10 diagnosis codes plays a crucial role in de-
termining the cost of healthcare services billed to patients [8]. This process is carried out
by medical record officers, who carefully examine medical records and assign the relevant
ICD-10 codes. The accuracy of this codification is vital for ensuring proper healthcare pay-
ments [8,9]. Specifically, errors in coding, incorrect data input, and improper placement of
diagnoses by medical record officers are then common causes of payment delays [2,10]. As
patient volume continues to rise, ensuring an adequate number of staff to handle codifica-
tion accurately and efficiently has become increasingly crucial [9].

In this context, the primary focus is on addressing cases associated with the codification
process conducted by the medical records team. More precisely, from a data science view-
point, this codification process involves classifying diagnostic text into the relevant ICD-10
categories. The diagnostic text serves as a feature, with the ICD-10 code functioning as its
classification label.

A major challenge in medical text classification is extracting meaningful information
from unstructured medical descriptions, particularly those that utilize specialized medical
terminology [11]. Medical data is often presented in formats that are difficult to inter-
pret and analyze automatically, necessitating the development of specialized methods to
process this text. Previous studies have explored various approaches to address this chal-
lenge. Another study [12] utilized a dual path model, combining a convolutional model
to extract local features and a BiGRU pathway to capture long-term dependencies, which
improved the accuracy of classification. In contrast, simpler models [13], such as those uti-
lizing stacked layers with BERT embeddings, have demonstrated that leveraging enhanced
word embeddings, like BERT, enables BiGRU to function more effectively. This approach
has proven particularly successful in text classification tasks, including Chinese language
processing, by providing more accurate contextual word representations and enhancing
overall performance.

Based on the discussion, this study is framed around two main objectives. First, how
can a model be constructed to effectively encode diagnostic text by classifying it into rele-
vant ICD-10 code categories? Second, how accurate is the model in performing this codi-
fication? By addressing these two questions, this research aims to make a substantial con-
tribution to improving the codification process in medical data management while simul-
taneously mitigating the potential for errors in health insurance claims.
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1.1 Overview of Key Concepts: ICD-10, BERT, and BiGRU

To fully comprehend the diagnosis classification process in this research, it is crucial to
understand the structure and purpose of the ICD-10 coding system. The ICD-10 coding
system is divided into two components: the ICD-10 Clinical Modification for diagnoses
and the ICD-10 Procedure Coding System (PCS) for procedures [14]. These codes consist
of seven characters, a combination of numbers and letters. The first three characters indi-
cate the type of diagnosis, the next two specify the particular diagnosis, and the final two
describe the severity and other related details.

One of the most powerful embedding methods in natural language processing is BERT,
recognized for its ability to generate contextual embeddings, even for out-of-vocabulary
words [15]. In text classification, BERT is used to extract these embeddings by passing
input sequences through a pre-trained model that understands the relationships between
words in context. BERT-base, for instance, processes input sequences of up to 512 tokens,
and the final hidden state is typically used as a representation of the entire sequence for
classification tasks [16].

The Gated Recurrent Unit (GRU) is an evolution of the Recurrent Neural Network
(RNN) architecture, designed for sequential data processing tasks, such as text, by using
the output of the previous layer as input for the next [16]. GRU incorporates gating mecha-
nisms, such as the forget gate to discard less important information and the remember gate
to retain essential information [17]. A variation of GRU, the Bidirectional GRU (BiGRU),
processes data in both forward and backward directions using independent parameters
while sharing the same word vectors [18].

1.2 Related Work

Previous studies in medical text classification have made significant contributions using
various techniques. Duarte [19] focused on classifying cause-of-death diagnoses into ICD-
10 codes. His approach utilized word embeddings derived from death certificate texts,
combined with recurrent units and neural attention mechanisms. This method achieved
a precision of 68.52%, a recall of 63.78%, and an Fl-score of 65.48%. Another study pro-
posed a hierarchical LSTM architecture to map ICD-10 codes from clinical documents [20].
The goal was to address the complexity of the large ICD-10 code set and the limitations of
available datasets. This approach showed promising results, with a precision and recall of
80.67%. Lastly, a study using Naive Bayes, Support Vector Machine, and Logistic Regres-
sion [21] categorized medical diagnoses into ICD-10 groups. Logistic regression achieved
the highest precision, recall, and F1-score at 86%, 91%, and 88%, respectively.

While previous studies laid a strong foundation, our research stands out by using state-
of-the-art transformer-based models, BERT, in combination with BiGRU for advanced fea-
ture extraction and sequence learning. This approach enables a deeper contextual under-
standing of medical texts. Moreover, while previous works have focused on various types
of medical texts, our study utilizes a specialized dataset consisting of primary diagnostic
texts from the National Hospital. This dataset provides a focused context for investigat-
ing the potential of advanced methods in diagnostic text classification. By combining the
power of BERT with BiGRU, we aim to improve diagnostic text classification and achieve
higher performance.

Prabhakar and Won developed a model using convolutional layers and BiGRU in paral-
lel pathways for processing the Hallmarks and AIM datasets [12]. The architecture started

JURNAL INFOTEL, VOL. 17, No. 2, MAY 2025, pp. 299-319.



302 PRIWIBOWO et al.

with a word embedding layer to convert text into contextually rich vectors, followed by
CNN layers for extracting local features. The BiGRU pathway captured long-term depen-
dencies in the text, with multi-head attention focusing on different parts of the text. The
model achieved an accuracy of 95.76%, but the dual-channel design required significant
computational resources as complexity increased [22].

Other research emphasized the effectiveness of simpler text classification methods that
rely on stacked layers rather than segmented channels [13]. This study utilized BERT and
BiGRU in conjunction for text classification, particularly in the context of Chinese text.
Despite the simple architecture, BERT accurately represented word contexts, while BiGRU
extracted bidirectional features. The approach achieved an accuracy of up to 95% across
various text domains.

This simplified approach was successfully applied to medical text classification, particu-
larly with specialized word embeddings, such as BioBERT [14]. Research has demonstrated
that models using BioBERT (BGA and B2GA) improve accuracy by up to 38% compared to
conventional BERT. Similarly, BiGRU-based models with self-attention efficiently extracted
semantic features for classification [23]. These methods promise effective performance even
with simpler architectures.

Our approach aligns with these previous studies by utilizing BERT in combination with
BiGRU, focusing on a simpler stacked-layer architecture. This approach offers a balance
between high performance and computational efficiency. By leveraging the strengths of
BERT’s contextual embeddings and BiGRU’s ability to model long-term dependencies, we
aim to enhance text classification in the medical text domain, specifically using diagnostic
text datasets, without the computational overhead associated with more complex architec-
tures.

2 Research Method

This study was carried out by adhering to the model development process stages as out-
lined in previous research [24], [25,26] as depicted in Figure 1.

Collecting o
Dataset Model Tralmng
A 4 \

Pre-processing Evaluating

Figure 1: Flow of the model development process.

2.1 Dataset

This study utilized medical records from a national referral hospital’s Information System
(SIMRS), focusing on inpatient cases from 2021 to 2023. Initially, 10,000 rows of data were
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collected, each comprising an ICD-10 code paired with the corresponding primary diag-
nosis text. During the extraction process, some rows were found to be corrupt or incom-
plete, resulting in unusable data. After thorough cleaning, 9,982 rows remained suitable
for analysis. The dataset was exported into CSV or XLS formats, with preprocessing steps
to address inconsistencies such as operational characters (e.g., '="and ’-’), empty fields, and
other incompatible entries.

Table 1 illustrates several data features along with their corresponding class labels. It
shows how some data points shift their labels due to label mapping. Several instances
show inconsistencies in labeling, where similar features are assigned to different labels.
These inconsistencies are observed across both small and large classes, indicating potential
issues with label assignment and mapping. In addition, there are inconsistencies within the
features themselves. These observations will be further explored in the discussion section.

For initial insights, the dataset was grouped to analyze the distribution of ICD-10 codes
and diagnosis texts. Table 2 presents the results of grouping and sorting the dataset. This
study focuses on ICD-10 groups with a minimum of 500 data rows, serving as class labels
for classification. Other data groups are mapped into a special code labeled "NN" to simu-
late unrecognized codes. Table 3 displays the data population resulting from the mapping
of ICD-10 codes into class labels. It shows that the NN label has the highest count, as it
aggregates various ICD-10 codes into one category, as illustrated by the pie distribution in
Figure 2. Subsequently, the cleaned dataset was randomly divided into three subsets: 70%
for training, 20% for validation, and 10% for testing, ensuring a balanced and representative
sample for model development.

147
J189 533

10,38 K01.1
11,01

Figure 2: Distribution of mapped labels dataset.

2.2 Preprocessing

Text preprocessing is a crucial process that refines, cleans, and standardizes textual data to
make it suitable for machine learning and deep learning systems. Common preprocessing
techniques include text cleaning, tokenization, removal of irrelevant elements, conversion,
correction, stopword removal, stemming, and lemmatization 15. The primary aim is to
remove unnecessary content, resulting in a clean and structured text dataset.
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Table 1: Illustration of The dataset with various labels and their corresponding mappings

ICD10 Mapped Primary Diagnosis Primary Diagnosis (Original)
Al6.2 Al6.2 1. Type 1 respiratory failure high- 1. Gagal napas tipe 1 ec HAP high
risk HAP 2. Septic shock ec HAP ...  risk 2. Syok sepsis ec HAP ...
C50.9 NN 1. Type 2 respiratory failure 2. Septic 1. Gagal napas tipe 2 2. Syok sepsis
shock dd/hypovolemic 3. CAP with ~ dd/hipovolemik 3. CAP dengan ...
E11.5 NN 1. Right foot gangrene post transtib- 1. Gangren pedis dextra post
ial amputation POD 4 (29/9/23) amputasi transtibial dextra POD 4
(29/9/23)
E11.5 NN 1. Diabetic right foot gangrene pre- 1. Gangren pedis diabetikum dextra
debridement with infection ... pro debridement dengan Infeksi ...
A09.9 NN 1. Acute gastroenteritis with moder- 1. Gastroenteritis akut dengan de-
ate dehydration, resolved hidrasi sedang teratasi
163.8 NN 1. Right hemiparesis and motor 1. Hemiparesis dextra et afasia mo-
aphasia with a history of ... torik dengan riwayat penurunan ...
J16.8 J16.8 1. Grade 4 hemorrhoids 1. Hemorrhoid grade 4
J16.8 J16.8 1. Pancytopenia history of severe 1. Pansitopenia riwayat neutropenia
neutropenia, suspected HIV infiltra-  berat curiga infiltrasi HIV ...
tion
K30 NN 1. Pancytopenia with neutropenia 1. Pansitopenia dengan riwayat neu-
history, suspected HIV infiltration tropenia curiga infiltrasi HIV ...
112.0 NN 1. Decreased consciousness ec sepsis 1. Penurunan kesadaran ec Sepsis 2.
2. Upper GI bleeding ec suspected Upper GI bleeding ec Susp DIC...
DIC ...
J16.8 J16.8 1. Decreased consciousness ec septic 1. Penurunan kesadaran ec syok
shock due to CAP sepsis ec CAP
J90 NN CAP (104) Age, heart, hematocrit, CAP (104) Usia, jantung, hematokrit,
pleural effusion Efusi pleura
J16.8 J16.8 CAP (Community-Acquired Pneu- CAP (Community Acquired Pneu-
monia) monia)
Al6.2 Al6.2 CAP (Severe) PSI 99 (age, gender, CAP (Severe) PSI 99 (usia jenis ke-

respiratory rate, sodium)

lamin, RR, natrium)

In this study, preprocessing was also implemented to minimize differences arising from
editorial variations in representing identical data. This involved standardization tech-
niques, addressing issues such as inconsistent use of Arabic and Roman numerals, irreg-
ular spacing, and normalization to unify the use of abbreviations and hierarchical refer-
ences. Case folding was applied to convert all text to lowercase, ensuring uniformity across
the dataset. The process was followed by tokenization and word vector embedding using
BERT, which was incorporated into the model training process. The entire preprocessing
pipeline was executed in a single iteration. While this approach posed the risk of requiring
complete retraining if an error occurred, it eliminated the need for program code adjust-
ments during implementation, streamlining the overall process.
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Table 2: ICD-10 code frequency distribution

ICD-10 All Diagnosis Unique Diagnosis Label Map
C34.9 1792 1692 C34.9
Al6.2 1088 785 Al6.2
125.1 1026 411 125.1
J16.8 978 617 J16.8
K01.1 972 513 Ko01.1
J18.9 830 273 J18.9

J47 527 270 J47
C53.9 489 278 NN
C50.9 194 187 NN
A09.9 194 157 NN
112.0 193 181 NN

C56 184 180 NN
E11.5 183 174 NN
163.8 166 154 NN
E11.9 165 162 NN

Jo0 153 147 NN
121.4 141 78 NN
A15.0 137 132 NN

K30 123 114 NN

J46 122 101 NN
Z03.1 71 69 NN
D38.1 65 64 NN
uo07.1 47 44 NN
506.0 42 36 NN
Total 9882 6819 24

Table 3: Distribution of ICD-10 codes in mapped labels for classification purposes

2.3 Model Building

New ICD-10 All Data Unique data

NN 2669 2258
C34.9 1792 1692
Al6.2 1088 785
125.1 1026 411
J16.8 978 617
K01.1 972 513
J18.9 830 273

147 527 270
Total 9882 6819

305

The proposed model in this study adopts frameworks from [16,27-29]. The process begins
by dividing the dataset into three parts: 70% for the training dataset, 20% for the validation
dataset, and 10% for the final testing dataset. The deep learning architecture used to train
the model consists of three main layers. The first layer is the BERT layer, which converts
each word in the sentence into a vector using the BERT pretraining model [13,27,30]. The
output vectors from BERT are then processed by the BiGRU layer, which extracts both
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semantic and temporal features from the text. This is followed by a fully connected neu-
ral network classification layer, with the final SoftMax layer used to determine the cat-
egory [27,31]. Unlike other models that typically use the output from the BiGRU layer
directly in the encoder or classifier, this proposed model focuses on the sequential integra-
tion of layers to enhance the effectiveness of text classification. (See Figure 3 for a schematic
of the model architecture.) The training process is conducted using several sets of hyperpa-
rameters and variations in embedding for a small number of epochs to gain insights into the
optimal setup. Subsequently, the training proceeds with a limit of 300 epochs, monitoring
performance improvements and watching for signs of overfitting.

Raw Datasets

v
Cleaning
v v v
Testing Dataset Train dataset Validation Dataset

v v v

Preprocessing
(shared)

! v v

BERT embedding .
(shared) BERT embedding (shared)
v

BiGRU
FC + Softmax
(Training)

¥

Evaluation <

v

Performance
Matrix

Figure 3: Schematic diagram of the model building process.

Preprocessing (shared)
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3 Results

3.1 Exploring Token Distribution

A sentence can be decomposed into a list of words, which can then be used to reconstruct
the original sentence 15. This process is known as tokenization. In BERT, each token is
converted into a numerical representation known as an embedding. Word embeddings are
vectors that capture the semantic meaning of tokens, including positional and segment em-
beddings to represent the token sequence. The histogram in Figure 4 shows the distribution
of the frequency of token length, representing the percentage of data that share the same
number of tokens. Diagnostic tests are characterized by a high frequency of shorter tokens,
as evidenced by their predominance of short sentences. This variation in sentence length,
or data inconsistency, is important for analyzing performance metrics such as precision and
recall during model evaluation stages.

To complement the analysis of the model, detailed information on the token distribution
for each ICD-10 code group is also essential. Figure 5 sequentially displays histograms of
token frequencies for each ICD-10 class label, providing insights into how tokens are dis-
tributed within specific categories. Some classes exhibit a more even distribution compared
to others, which may indicate a balanced spread of sentence lengths. Notably, classes C34.9
and K01.1 show distributions resembling a normal distribution without skew, suggesting
uniformity in token frequency that could impact model predictions differently. It has been
observed that classes with a more balanced token-length distribution tend to perform better
in classification tasks. This observation is further supported by the results shown in Fig-
ure 11, the confusion matrix, and the performance of the model in Table 7, both of which
are presented in the following section.

3.2 Model Training

The model was trained using the Stacked BERT-BiGRU architecture with the parameters
listed in Table 4, following several iterations of parameter adjustments tested during the
study to achieve optimal performance. The training process involves calculating the loss,
which measures the difference between the model’s predictions and the actual values. For
text classification, the training loss was computed using Cross Entropy Loss 30. During
the first five epochs, a significant reduction in error was observed, followed by a continu-
ous decrease in both training and validation losses. As shown in Figure 6, after epoch 36,
the loss became minimal, with values approaching 10~¢ per epoch for both training and
validation.

After epoch 36, the performance improvement became less balanced. Figure 7 illus-
trates that the performance gains of the validation dataset were slower than those of the
training dataset. The precision measure between the two datasets only differed by 0.0003
at epoch 35, but by epoch 300, it had grown to 0.0457. Although overfitting indicators
have not fully emerged, the performance gap between the two datasets is noticeable. To
anticipate overfitting, model states were manually backed up at five-epoch intervals before
overfitting signs appeared. After signs of saturation were observed beyond epoch 40, fur-
ther backups were conducted manually at irregular intervals, as no significant refinement
in model performance was detected.
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Overall Token Length Distribution

40 60 100
Token count

Figure 4: Histogram showing the distribution of token frequencies in diagnostic text data
across the entire dataset.
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Figure 5: Token frequency distribution for each ICD-10 class label in the dataset.
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Figure 6: Reduction of training loss and validation loss over 300 epochs.
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Table 4: Hyperparameters used for model training

Parameter Value

BERT model BERT Base
Learning rate 0.0001

Epoch 20

Dropout rate 0.2

Layer 2

Hidden layer dimension 128

Loss function Cross Entropy
Optimizer Adam

1Lraining and Validation Precision . E>Trainhn:;a and Validation Recall

g _ I
& = 0.6 4 |
L ¥l
&
E 0.4 4 r
= Training Precision = Training Recall
0.2 —— Validation Precision 0.2 1 —— Validation Recall
0 100 200 300 0 100 200 300
Epochs Epochs

Figure 7: Comparing performance improvement for both training and validation datasets.

3.3 Hyperparameter Optimization

This study uses commonly used evaluation indices in text classification, namely precision
(P), recall (R), and F1 score (F1) [30]. Precision indicates the accuracy of the model’s pre-
dictions; recall represents the number of classes successfully identified by the model, and
the F1 score is used when a balance between precision and recall is necessary. These three
evaluation indices, as described by [12], are calculated using the following formulas:

.. TP
Precision = TP+ Fp (1)
TP
Recall = m (2)

2 x Precision x Recall
Fl Score = Precision + Recall )

It is common practice to fine-tune various parameters when building a model to achieve
optimal performance [29]. Research [13] identified the optimal parameters for the BERT-
BiGRU classification as batch size 4, hidden layer size 768, and a learning rate of 1e-5. In
this study, several hyperparameter combinations were explored to identify the optimal con-
figuration for the text classification model. Specifically, experiments were conducted with
various dropout rates ranging from 0.2 to 0.4 and different numbers of layers in BiGRU.
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The results of these experiments are presented in Table 5, which illustrates the impact of
hyperparameter changes on model performance. Up to epoch 15, it was identified that the
optimal setup, as outlined in Table 5, was a dropout rate of 0.2 and two layers.

Table 5: Model performance evaluation with BERT-base model with learning rate of 1le-04
and variations in drop rate and number of nayers

Epoch Evaluation Dropout = 0.2 Dropout = 0.3 Dropout = 0.4
Layer=2 Layer=3 Layer=2 Layer=3 Layer=2 Layer=3
Precision 0.773 0.7583 0.7206 0.7377 0.7596 0.7514
5 Recall 0.7113 0.672 0.6676 0.6631 0.6559 0.6863
F1 score 0.6827 0.6105 0.6056 0.608 0.5914 0.6331
Precision 0.7761 0.7748 0.7636 0.7679 0.7669 0.7751
10 Recall 0.7525 0.7498 0.7391 0.7462 0.7489 0.7551
F1 score 0.7312 0.7308 0.7172 0.729 0.7296 0.7314
Precision 0.8031 0.8159 0.767 0.8146 0.7936 0.7822
15 Recall 0.8034 0.798 0.7426 0.7971 0.7554 0.7819
F1 score 0.8022 0.7969 0.7217 0.7776 0.7568 0.7793

3.4 Vector Embedding

Throughout the investigation, multiple-word embedding vectors were utilized to optimize
the performance of the model in classification tasks and other related analyses [19]. As
demonstrated by research [27], several word embeddings were employed in the study to
explore their impact on model performance. In this context, experiments were conducted
using three different pre-trained BERT models as embedding vectors. The performance
of these pre-trained models BERT-base, Indo-BERT, and BioClinical BERT - was compared
to determine the most effective approach. The comparison results, as shown in Figure 8,
indicate a similar upward performance trend for both training and validation across all
three embedding vectors. Despite similar trends, Table 6 reveals that the embedding vector
with the most significant impact in this experiment is BERT-Base, achieving a precision of
82.2% and a recall of 81.6% at epoch 20.

Evaluating Precision using BERT-Base Evaluating Recall using BERT-Base Evaluating F1 Score using BERT-Base
10y 0= +

Taifing Precice Traarang Recall Trairang F1 Scone

walHiaT i Y isaan Walsiad s B & valication F1 Scoee

TP s s I o

Fecall
5
3

Figure 8: Model evaluation using BERT-base, Indo-BERT, and BioClinical-BERT.

» https:/ /ejournal.ittelkom-pwt.ac.id /index.php/infotel


https://ejournal.ittelkom-pwt.ac.id/index.php/infotel

ENHANCING DISEASE DIAGNOSIS CODING: A DEEP LEARNING - - - 311

Table 6: Model performance with variations in Vector Embedding

Epoch BERT Based Indo-BERT BioClinical BERT
Precision Recall Precision Recall Precision Recall

5 0.771 0.711 0.764 0.750 0.770 0.736
10 0.776 0.753 0.798 0.788 0.806 0.796
15 0.803 0.803 0.820 0.809 0.801 0.795
20 0.822 0.816 0.785 0.786 0.806 0.803

4 Discussion

4.1 Model Performance

Throughout the training process, continuous evaluations were performed on both the train-
ing and validation dataset to monitor performance improvements at each epoch, as prac-
ticed in [32]. These ongoing assessments allowed for real-time adjustments and provided
valuable feedback on the model’s progress. After training the model for 300 epochs, a final
evaluation of the test dataset revealed strong performance, with a precision of 83.67%, a
recall of 82.74%, an F1 score of 82.66%, and an accuracy of 81.92%. The high precision
indicates that the model accurately identifies positive cases, with 83.04% of its positive pre-
dictions being correct. The recall of 82.74% reflects the model’s capability to detect most
of the actual positive cases. Despite these strong metrics, the accuracy of 81.92% indicates
that there is still room for improvement in the overall correctness of the model.

Performance on both the training and validation datasets showed consistent improve-
ment across the 300 epochs, as illustrated in Figure 9 and Figure 10. This steady upward
trend highlights the model’s effective learning capability. However, it is important to re-
main cautious about potential signs of overfitting. As depicted in Figure 7, there is a notice-
able divergence between training and validation performance. While the validation dataset
does not show a significant decline, the continuous increase in the training dataset’s per-
formance suggests that the model might be overly fitting to the training data. To address
this issue, consider limiting the training to the epoch where the issues first arise, thereby
preventing overfitting while still allowing for model improvement.

Training Precision, Recall, and F1 Score Over Epachs
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Figure 9: Performance gain on the training dataset: precision, recall, and F1 Score.
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The confusion matrix for the test dataset offers a comprehensive view of the model’s
classification accuracy across different classes [33], [34]. The confusion matrix in Figure 11
provides a detailed view of the model’s ability to predict each class, helping to identify spe-
cific classes where the model may struggle. This evaluation highlights overall performance
and reveals class-level variations, indicating where the model performs well and where
further refinement is necessary for more accurate class-specific predictions. By analyzing
the matrix, as shown in Figure 11, the performance of each class/label can be evaluated,
pinpointing the strengths and weaknesses of the model.

Validation Precision, Recall, and F1 Score Over Epochs
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Figure 10: Performance gain on the validation dataset: precision, recall, and F1 Score.
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Figure 11: Confusion matrix, showing the model performance across all classes.
In general, larger datasets improve classification performance by providing more rep-

resentative samples, reducing overfitting, and enhancing the model’s ability to generalize
to new data, as demonstrated by recent research [35,36]. The strong correlation between
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the available data population per class and the model’s performance in predicting each
class can be confirmed by revisiting Table 3. The classes with the most data population,
except the NN class, show the highest performance. However, it is essential to consider the
available data population not only in terms of raw data count but also in terms of unique
data points. Duplicating data in a class can make the data size seem larger but could poten-
tially lead to an overestimation of the model’s training input [37]. The true impact of data
availability on model performance should consider the diversity of data within each class,
as repeated data points may not contribute effectively to the model’s learning process.

However, the performance of the model is not solely influenced by the population size
of a data set. Research [37] highlights that these six dimensions of data quality, consistency,
completeness, accuracy of characteristics, uniqueness, accuracy of targets, and balance of
target classes play a crucial role in determining model performance. In our study, we ob-
served that some classes with smaller populations outperformed others with larger pop-
ulations. This discrepancy can be attributed to the higher data quality in smaller classes.
In Table 7, classes NN and ]J16.8 exhibit lower performance compared to other classes with
smaller dataset sizes.

Table 7: Evaluation of model performance by class
Class Precision (%) Recall (%) F1 Score (%)

KO01.1 1.0000 0.9857 0.9928
125.1 0.9206 0.8788 0.8992
C34.9 0.8163 0.9639 0.8831
NN 0.7315 0.7786 0.7543
Al6.2 0.7705 0.7460 0.7580
J47 0.7188 0.7667 0.7420
J18.9 0.7500 0.7222 0.7358
J16.8 0.7632 0.5179 0.6170

Analysis of dimension completeness and feature accuracy requires domain-specific
knowledge, particularly in the medical field. Completeness refers to the presence of all
relevant and necessary data, while feature accuracy indicates how closely dataset values re-
flect the true values. However, upon further examination of Table 1 in the dataset section, it
becomes apparent that both classes suffer from issues related to target accuracy. Class J16.8,
in particular, is characterized by frequent mislabeling, with instances of multiple different
labels assigned to the same samples. This inconsistency in the labeling contributes to inac-
curacies in the ability of the model to accurately identify the class [38], thereby affecting its
overall performance. Moreover, the features associated with Class J16.8 also demonstrate
inconsistency, which hinders the model’s capacity to learn from the data effectively.

NN class, on the other hand, is a composite class constructed from 17 smaller sub-
classes, and Table 1 reveals that it contains numerous instances of label duplication and
feature overlap with other classes. These issues introduce significant noise, further compli-
cating the classification process. According to research [37], such problems in data quality
- specifically in terms of consistency, target accuracy, and class balance - are expected to
degrade model performance. Even though Class NN contains a larger number of unique
data points, the lack of quality in terms of data consistency and feature uniqueness leads
to diminished predictive accuracy, confirming that data quality dimensions outweigh the
mere size of the dataset.
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Further investigation reveals a potential relationship between class performance and
the distribution of tokens per class. While existing research, such as [39], suggests that
token frequency may influence classification model performance and [40] discusses the im-
pact of token length on model outcomes, research [41] demonstrates that a dataset with a
normal distribution of token length frequencies and less skew correlates with higher perfor-
mance. This study makes similar observations based on the data, as Figure 5 indicates that
classes with a more continuous and evenly distributed token frequency tend to perform
better.

This finding implies that not only the dataset size but also a balanced token represen-
tation within the classes may positively influence the model’s accuracy in predicting those
classes. For instance, classes such as K01.1, 125.1, and C34.9 exhibit token distributions that
approach a normal distribution, which correlates with their higher performance. In con-
trast, while class NN exhibits a better token frequency distribution, as mentioned earlier,
it is plagued by significant noise and inconsistency in its features, which ultimately hinder
its performance despite the favorable token distribution.

4.2 Future Work

Recent findings have highlighted that the quality of data labeling has a significant impact
on model performance, particularly in medical classification tasks. A recent study [37]
highlights that inconsistencies, low accuracy, and poor class balance in labeled datasets sig-
nificantly degrade the effectiveness of machine learning systems. These observations align
with the study’s findings, particularly regarding the NN and J16.8 classes, where issues
such as duplicate entries, ambiguous label mappings, and feature overlap introduce con-
siderable noise. Such problems suggest that the current annotation quality in the dataset
requires systematic improvement to achieve better results in clinical environments.

To mitigate these issues, future work should focus on improving the annotation process.
This includes involving multiple medical experts to cross-validate labels, refining clinical
coding guidelines, and applying semi-automated quality control techniques to detect label-
ing inconsistencies [42]. This research shows that targeted data augmentation strategies can
also enhance model robustness under noisy conditions, especially in medical NER tasks.
Additionally, semi-supervised learning (SSL) approaches offer the potential to enhance
text classification performance when labeled data are limited. SSL techniques leverage
both labeled and unlabeled data to improve the accuracy of the model. Recent studies [43]
have explored various SSL methods, including pseudo-labeling and self-training, to ad-
dress challenges in text classification tasks. Another promising direction is the use of label
correlation modeling. Research [44] introduced the LCFM method, which learns to infer
missing or imprecise labels by exploiting inter-label relationships. Incorporating such ap-
proaches can enhance classification performance, particularly in settings where obtaining
complete or clean annotations is challenging.

Finally, while data augmentation and semi-supervised learning techniques offer
promising avenues for enhancing model performance, their application must be ap-
proached with caution. This study uses authentic diagnostic texts sourced from a national
referral hospital, which reflect the linguistic and contextual realities of local clinical prac-
tice. Any additional methods must therefore be carefully evaluated to ensure that they do
not introduce artifacts or biases that compromise the original characteristics of the data.
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Preserving the integrity of real-world datasets is essential to maintain the clinical relevance
and trustworthiness of deep learning models in healthcare settings.

4.3 Contribution

Although the BERT-BiGRU stacked architecture employed in this study is based on well-
established methods in natural language processing, the value of this work lies in its real-
world application. Specifically, it uses authentic diagnostic texts collected from a national
referral hospital in Indonesia, capturing the local clinical language and context that are
rarely represented in publicly available datasets. This practical implementation in a high-
stakes environment such as insurance claim processing demonstrates the relevance and
utility of such models beyond theoretical performance, highlighting the uniqueness of the
dataset and the implementation setting. Beyond architectural design, the most significant
contribution of this study lies in the development of a domain-specific trained model using
authentic diagnosis texts from a national referral hospital. This model provides a practical,
ready-to-implement solution for supporting ICD-10 classification in hospital business pro-
cesses, particularly in contexts where accuracy of codification and operational efficiency
are crucial.

5 Conclusion

This research aimed to develop a model capable of encoding diagnostic texts and evalu-
ating its accuracy and effectiveness. Based on the evaluations conducted, the developed
model demonstrated promising results, achieving an accuracy of 81.92%, a precision of
82.18%, and a recall of 81.59%. These figures indicate that the model can effectively en-
code diagnostic texts, thereby enhancing the accuracy of diagnostic coding and improving
the health insurance claims process. Furthermore, the evaluation of the model revealed
that the data volume per class influences its classification performance. Generally, a larger
data population enhances predictive capability. Additionally, classes with a continuous
and evenly distributed token frequency demonstrated better performance, suggesting that
balanced token representation may hold promise for further exploration. In contrast, some
classes performed poorly despite meeting the criteria for data volume and token distribu-
tion. These classes consist of merged classes, which lack distinct features and are inconsis-
tent in their feature representations, making them difficult for the model to recognize. Du-
plication and inconsistent labeling were observed within these classes, likely contributing
to their degraded performance. With the current model achieving an accuracy of 81%, this
research presents opportunities for further improvement. Based on the findings, greater
attention should be given to increasing data volume, improving the accuracy of labeling,
and maintaining clear, consistent, and distinctive features in the dataset. These three fac-
tors have proven to be crucial in enhancing the predictive accuracy of the classification
model. In addition to refining label quality, as outlined, future work may also explore data
augmentation and semi-supervised learning, provided that these techniques are applied
cautiously to avoid introducing bias or compromising the integrity of the original, real-
world local dataset.
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