

JURNAL INFOTEL
Informatics - Telecommunication - Electronics

Website Jurnal : http://ejournal.st3telkom.ac.id/index.php/infotel
ISSN : 2085-3688; e-ISSN : 2460-0997

 157
Jurnal Infotel Vol.10 No.3 August 2018

https://doi.org/10.20895/infotel.v10i3.379

Improved Load Balancing on Software Defined Network-
based Equal Cost Multipath Routing in Data Center

Network

Ramadhika Dewanto1*, Rendy Munadi2, Ridha Muldina Negara3
1,2,3Universitas Telkom

1,2,3Jl. Telekomunikasi No. 1 Terusan Buah Batu, Bandung 40257, Indonesia
*Corresponding email: ramadhikadewanto@gmail.com

Received 15 July 2018, Revised 02 August 2018, Accepted 08 August 2018

Abstract — Equal Cost Multipath Routing (ECMP) is a routing application where all available paths between two
nodes are utilized by statically mapping each path to possible traffics between the source and destination hosts in
a network. This configuration can lead to congestion if there are two or more traffics being transmitted into paths
with overlapping links, despite the availability of less busy paths. Software Defined Networking (SDN) has the
ability to increase the dynamicity of ECMP by allowing the controller to monitor available bandwidths of all links
in the network in real-time. The measured bandwidth is then implemented as the basis of the calculation to
determine which path traffic will take. In this research, an SDN-based ECMP application that can prevent network
congestion was made by measuring the available bandwidth of each available paths beforehand, thus making
different traffics transmitted on non-overlapped paths as much as possible. The proposed scheme increased the
throughput by 14.21% and decreased the delay by 99% in comparison to standard ECMP when congestion occurs
and has 75.2% lower load standard deviation in comparison to round-robin load balancer.

Keywords – ECMP, SDN, Load Balancing

All rights reserved.

I. INTRODUCTION

With the rapid development of internet and its
applications such as big data, cloud computing, and
other large scale network services, enormous data
centers which often take the form of multi-rooted
switches or routers were built [1]. In order to efficiently
use the resources of the topology, multipath
transmission such as equal cost multipath routing
(ECMP) was used to control which path of the network
does each flow will take [2].

ECMP used a hash function to statically mapped
each flow to a path, making every available path
between two nodes utilized [3][4]. This static
configuration, despite having more balanced load
distribution than standard spanning tree protocol, still
lacks a dynamic mechanism that accounts currently
available bandwidth of each path that can contribute to
an unbalanced distribution of loads in the network or
even link congestion if the flows are large enough [5].

Software defined network is a concept where
network architecture is divided into two parts, which
are a controller (control plane) and switches that
forward traffics based on controller’s instruction (data
plane) [6]. Having the ability to measure each link’s
bandwidth in real time [7], the controller can improve
the dynamicity of path choosing algorithm by including
currently available bandwidth in the calculation before
sending the final path to the switches.

Various researches have been done to improve the
dynamicity of ECMP in the data center such as [1], [5],
[8] and [9]. [1] and [5] used a hash function to initialize
a path like the standard ECMP and re-route the flow if
it causes congestion along the way. [8] and [9]
prevented congestion from occurring even more by
measuring links’ bandwidth beforehand and used the
max-min remainder capacity (MMRCS) algorithm [13]
to initialize a path. If congestion still occurs in the
middle of transmission, the responsible flow(s) will be
re-routed.

Copyright © 2018 JURNAL INFOTEL

ISSN : 2085-3688; e-ISSN : 2460-0997

Improved Load Balancing on Software Defined Network-based Equal Cost Multipath Routing in Data Center Network

 158
Jurnal Infotel Vol.10 No.3 August 2018

https://doi.org/10.20895/infotel.v10i3.379

In this paper, we create a program as an alternative
to the first half of the load balancing mechanism in [8]
and [9] by measuring links’ bandwidth before assigning
a path to a traffic, only we use Dijkstra’s widest path
algorithm instead of max-min remainder capacity
(MMRCS) and uses Ryu controller instead of NOX and
Floodlight controller.

II. RESEARCH METHOD

A. Emulation Model

We choose Mininet to emulate a network in the
form of fattree topology because it uses lightweight
container-based virtualization that is capable of
emulating a large scale network [10].

Fig.1. Network Simulation Topology

The network topology as illustrated in Fig.1 above
is a fattree topology consists of 20 switches and 16
hosts, and we set the bandwidth of all links to be 8
Mbps. Each switch in the network is connected directly
to the Ryu controller [14] and communicating via
OpenFlow 1.3 protocol [15]. We ran the emulation on
a laptop powered by quad-core 3.4 GHz CPU and 8 GB
of RAM.

B. Load Balancing Algorithm

In software defined network architecture, switches
forward every traffic based on its flow table, made by
the controller. When a switch receives unknown traffic,
it will send a packet-in to the controller as a request to
update the flow table.

Fig.2. Program Flowchart

Figure 2 shows that our program started when the
controller received a packet-in, as a request to find a
path. The controller used flow_stats_request and its
flow_stats_reply feature from OpenFlow to collect
transmitted bytes and timestamps periodically to
calculate the available bandwidth of each link. This
measured bandwidth is used by Dijkstra’s Widest Path
algorithm along with topological information to
determine which path has the biggest bottleneck
available bandwidth. By doing this, the chosen path will
be the least busy path thus making the load distribution
in the network more balanced.

Furthermore, after the best path with the maximum
available bandwidth was found, the controller informed
every switch involved in the path to update its flow
table. When the transmission process finished, the
switches removed a specific traffic entry on its flow
table in order to make sure to always send a packet-in
to the controller so that the controller can choose the
least busy path again.

C. Evaluation Scenario

There are two evaluation scenarios in this paper,
with first scenario aimed to test the ability of the
proposed scheme to choose the best path and its effect
on the quality of service value and the second scenario
to measure the load standard deviation to give a
quantitative measure of load balancing process.

The first scenario was done by sending three 4.5
Mbps UDP data traffic from H4-H14, H5-H13, and
H10-H15 as shown in Fig.1. If at least two out of three
traffics transmitted on the same 8 Mbit link(s),
congestion will occur thus making a decrease in QoS
values. The proposed scheme is aimed to avoid this
possibility. Throughput, delay, and packet loss are used
as the parameter.

The second scenario was done by sending multiple
G.711 VoIP traffics from H1 to H16, while two
background traffics are running from H2-H13 and H4-
H15 increasing from 0,4,6,8 to 10 Mbps. Throughput
was measured to calculate load standard deviation using
(1) and packet loss in additional.

��� = �
∑ (�����������������)��

���

�
 (1)

We used a Distributed Internet Traffic Generator
(D-ITG) [11] and iperf to measure the quality of
service and to generate the UDP and VoIP traffic used
in both scenarios.

III. RESULT

A. First Scenario

We tested the first scenario using spanning tree
protocol (STP), the standard ECMP, and the SDN-
Based ECMP with our proposed scheme.

RYU CONTROLLER

ISSN : 2085-3688; e-ISSN : 2460-0997

Improved Load Balancing on Software Defined Network-based Equal Cost Multipath Routing in Data Center Network

 159
Jurnal Infotel Vol.10 No.3 August 2018

https://doi.org/10.20895/infotel.v10i3.379

Fig.3. Throughput from First Scenario

Figure 3 shows that STP has the lowest throughput
around 2 Mbit/s and the standard ECMP has also shown
a decrease on H5-H13 and H10-H15 traffic from the
original 4.5 Mbit/s to around 4 Mbit/s. Our proposed
scheme, on the other hand, has shown a stable
throughput from all of the three traffics to be around 4.5
Mbit/s. One thing to notice is that one traffic (H4-H14)
has a 0.19% higher average throughput when using
standard ECMP in comparison to our proposed scheme.

Fig.4. Packet Loss from First Scenario

Figure 4 shows that STP has the highest packet loss
ranging from 35.9% to 41.5% at its peak while standard
ECMP has also shown a good amount of packet loss on
H5-H13 and H10-H15 traffic measuring 8.4 and 8.7%,
despite having a zero packet loss on H4-H14 traffic.
Our proposed scheme yields a zero packet loss either
from H4-H14, H5-H13 or H10-H15 traffic.

With the same trend from throughput and packet
loss, Fig.5. shows that STP has the worst delay value
ranging from 691 ms to 730,2 ms. The standard ECMP
has also shown a good amount of delay on H5-H13 and
H10-H15 traffic which are 491 ms and 494 ms. Our
proposed scheme has a stable low delay average value
ranging from 13.4 ms to 13.6 ms. Just like throughput,

standard ECMP has yielded a slightly lower delay
(3.46%) than our proposed scheme.

Fig.5. Delay from First Scenario

B. Second Scenario

We tested our scenario on the standard round-robin
load balancer and our proposed scheme.

Fig.6. Throughput from the Second Scenario

Figure 6 shows that both round robin and our
scheme has shown a stable 65 Kbps average throughput
from 4 VoIP when the background traffics are 0, 4, and
6 Mbit/s and starting to decrease when the link is
saturated which is when background traffics are 8
Mbit/s and 10 Mbit/s. Our proposed scheme has a better
average throughput value than the standard round-
robin, measuring 71.09% higher on 8 Mbit/s
background traffics and 80.56% higher on 10 Mbit/s
background traffics.

1961.9 1945.5
2221.3

4476.6
3942.0 3914.1

4467.7 4474.4 4470.5

0.0

1000.0

2000.0

3000.0

4000.0

5000.0

H4-H14 H5-H13 H10-H15

K
bp

s

Throughput

STP ECMP ECMP SDN

39.7 41.5

35.9

0

8.4 8.7

0 0 0
0.0

10.0

20.0

30.0

40.0

50.0

H4-H14 H5-H13 H10-H15

%
 p

ak
et

Packet Loss

STP ECMP ECMP SDN

0.7300 0.7302
0.6913

0.013

0.4910 0.4938

0.0136 0.0134 0.0135

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

H4-H14 H5-H13 H10-H15

S
ek

on

Delay

STP ECMP ECMP SDN

65 65 65

41.20
35.75

65 65 65

24.08
19.80

0

10

20

30

40

50

60

70

0 4 6 8 10

K
bi

t/
s

Background Traffic (Mbps)

Average Throughput

ECMP SDN Round Robin

ISSN : 2085-3688; e-ISSN : 2460-0997

Improved Load Balancing on Software Defined Network-based Equal Cost Multipath Routing in Data Center Network

 160
Jurnal Infotel Vol.10 No.3 August 2018

https://doi.org/10.20895/infotel.v10i3.379

Fig.7. LSD from the Second Scenario

From the throughput, load standard deviation
(LSD) is calculated using (1). Fig.7 shows that round
robin and our scheme has shown a uniform zero LSD
from 4 VoIPs when the background traffics are 0, 4,
and 6 Mbit/s and starting to increase when the link is
saturated on 8 Mbit. Our proposed scheme has a better
LSD value than the standard round-robin, measuring
75.22% lower on 8 Mbit/s background traffics and
72.24% lower on 10 Mbit/s background traffics.

Fig. 8. Packet Loss from Second Scenario

Figure 8 shows that both round robin and our
scheme has yielded zero packet loss from 4 VoIP when
the background traffics are 0, 4, and 6 Mbit/s and
starting to increase when the link is saturated. Our
proposed scheme has shown a better quality in
comparison to round robin, measuring 26.34% less
packet loss on 8 Mbit/s background traffic and 24.54%
less packet loss on 10 Mbit/s background traffic.

IV. DISCUSSION

A. First Scenario

Figure 3, 4, and 5 show that from the same scenario
used to send three traffics, spanning tree protocol has
the worst overall result. By using Wireshark, we were
able to map which path that each traffic takes for
transmitting the data as a result of the STP algorithm.

Fig. 9 shows that every traffic takes the same link
between switch 1001 and switch 2007, making the total
traffic adds up to 13.5 Mbit/s in 8 Mbit link triggering
a sharp decrease in throughput and an increase in packet
loss and delay values. This happened because the STP
algorithm is aimed to break every loop in the network
topology. As a result, there is only one core switch
utilized (switch 1001), making the congestion occurred
inevitably.

Fig. 9. STP Path Map

Figure 3, 4, and 5 show that the standard ECMP
yielded a normal throughput, delay, and packet loss
values on one traffic (H4-H14) and had a decrease in
quality on two traffic which is H5-H13 traffic and H10-
H15 traffic.

Fig.10. Standard ECMP Path Map

Figure 10 shows the mapped path of each traffic
using Wireshark. It shows that the traffic between H5-
H13 and H10-H15 was using the same link between
switch 1001 and switches 2007 with the total traffic
adds up to 9 Mbit/s on 8 Mbit/s, it explains the decrease
in quality of service values on H5-H13 and H10-H15
traffic. The H4-H14, on the other hand, was using a
completely different path which explains the normal
quality of service values yielded earlier. This
phenomenon occurred because the standard ECMP did
not account a current bandwidth of the links and used a
hash function instead to statically map a path to a traffic.
Despite making a congestion in a link between switch
1001 and switch 2007, both H5-H13 and H10-H15
traffic was being transmitted in the same path because

0 0 0

0.83 0.93

0 0 0

3.35 3.35

0

0.5

1

1.5

2

2.5

3

3.5

4

0 4 6 8 10

L
S

D

Background Traffic (Mbps)

Load Standard Deviation (LSD)

0 0 0

36.62
45

0 0 0

62.96
69.54

0

20

40

60

80

0 4 6 8 10

%
 p

ac
ke

t

Background traffic (Mbps)

Packet Loss

ECMP SDN Round Robin

Controller

Controller

ISSN : 2085-3688; e-ISSN : 2460-0997

Improved Load Balancing on Software Defined Network-based Equal Cost Multipath Routing in Data Center Network

 161
Jurnal Infotel Vol.10 No.3 August 2018

https://doi.org/10.20895/infotel.v10i3.379

the alternative paths had been assigned to another
traffic, even though that specific traffic is not in the state
of transmission at the moment. This problem could be
solved by considering the currently available
bandwidth of each link before choosing a path as our
proposed scheme does.

Figure 3, 4, and 5 show that our proposed scheme
had a stable near 4.5 Mbit/s throughput, zero packet
loss, and near 13 ms delay values for all of the three
traffic we have sent. This is explained by a completely
three different paths utilized by the three traffics as
shown in Fig.11.

Fig. 11. Proposed Scheme Path Map

The paths that have been illustrated in Fig.11 is
possible because the controller considered the available
bandwidth of every link (which monitored periodically)
when choosing which path traffic will take using
Dijkstra’s widest path. As a result, every traffic was
assigned to the least busy path thus making the
distribution of the load more balanced and the quality
of service values are maintained.

One thing to notice is that on H4-H14 traffic as
shown in figure 3, 4, and 5, our proposed scheme had a
slight decrease in QoS values which are 3.46% higher
delay and 0.19% lower throughput in comparison to the
standard ECMP. This is caused by the additional
process of Dijkstra’s widest path algorithm to choose a
path based on each path’s bottleneck available
bandwidth took more time in comparison to a statically
mapped paths in the standard ECMP and there was no
congestion occurred in the path of H4-H14 traffic
(figure 10) that could decrease the quality of service
values.

B. Second Scenario

Load standard deviation is a measurement to
determine how even an algorithm can distribute traffic
loads in the network. Based on formula (1), a load
standard deviation value is better if its closer to zero. If
traffic loads in the network are perfectly distributed thus
making the throughput of each traffic has the same
value, the average value of the throughput will match
the same individual throughput values resulting in load
standard deviation equal to zero.

Based on [12], a lower load standard deviation value
indicating that specific load balancer is better than the
others is only a valid statement if the average
throughput of the transmitted loads is higher and the
total of packet losses is lower.

 Figure 7 shows that our proposed scheme had
75.22% lower LSD value than round robin on 8 Mbit/s
background traffics and 72.24% lower LSD value than
round robin on 10 Mbit/s background traffics. At the
same time, figure 6 and figure 8 shows that at 8 Mbit/s
background traffic our proposed scheme yielded
26.34% less packet loss and 71.09% higher throughput
than round robin and yielded 24.54% less packet loss
and 80.56% higher throughput on 10 Mbit/s
background traffics, proving that our proposed scheme
is a better load balancer. This improvement is the result
of measuring the available bandwidth of each link
before choosing a path instead of just alternately
switching between available paths regardless of the
bandwidth which was done on a round robin algorithm.

V. CONCLUSION

Our proposed scheme improves the ECMP load
balancing capability by measuring available bandwidth
of each link before choosing a path to transmit each
traffic, those making each traffic assigned to the least
busy path as much as possible. Our experiment proves
that the proposed scheme works, yielding 14.21%
higher throughput, 8.7% less packet loss and 97.27%
lower delay in comparison to the standard ECMP when
congestion occurs. When there is no congestion
occurring, the additional Dijkstra’s widest path process
from our scheme causes a slight trade-off in 0.19%
lower throughput and 3.46% higher delay in
comparison to the standard ECMP. The proposed
scheme is also proven to be a better load balancer when
sending multiple traffics from the same source-
destination than round robin with 75.2% lower LSD
value, 24.54% less packet loss and 80.56% higher
throughput.

The future work of this paper is to maximize the
efficiency of Dijkstra’s widest path algorithm (or
trying another path finding algorithm) to minimize the
trade-off as much as possible. We also want to
complete the load balancing mechanism based on [8]
and [9] so that our work can be reactive to a congestion
occurred along the way in addition to being preventive.

REFERENCES

[1] Hailong Zhang, Xiao Guo, Jinyao Yan, Bo Liu, and

Qianjun Shuai, “SDN-based ECMP algorithm for data
center networks,” 2014 IEEE Comput. Commun. IT
Appl. Conf., pp. 13–18, 2014.

[2] M. Chiesa, G. Kindler, and M. Schapira, “Traffic
Engineering with {ECMP}: An Algorithmic
Perspective,” Proc. IEEE INFOCOM, vol. 25, no. 2,
pp. 1590–1598, 2014.

[3] C. Hopps, “Analysis of an Equal-Cost Multi-Path

Controller

ISSN : 2085-3688; e-ISSN : 2460-0997

Improved Load Balancing on Software Defined Network-based Equal Cost Multipath Routing in Data Center Network

 162
Jurnal Infotel Vol.10 No.3 August 2018

https://doi.org/10.20895/infotel.v10i3.379

Algorithm,” Doc. RFC 2992, IETF, pp. 1–8, 2000.

[4] a. Iselt, A. Kirstadter, A. Pardigon, and T. Schwabe,
“Resilient routing using MPLS and ECMP,” 2004
Work. High Perform. Switch. Routing, 2004. HPSR.,
pp. 345–349, 2004.

[5] M. Al-Fares, S. Radhakrishnan, and B. Raghavan,
“Hedera: Dynamic Flow Scheduling for Data Center
Networks.,” Nsdi, p. 19, 2010.

[6] F. Ieee et al., “Software-Defined Networking : A
Comprehensive Survey,” Proc. IEEE, vol. 103, no. 1,
pp. 14–76, 2015.

[7] A. L. Hf et al., “Multipath Routing with Load
Balancing and Admission Control in Software Defined
Networking (SDN),” vol. 4, no. c, pp. 4–9, 2016.

[8] H. Long, Y. Shen, M. Guo, and F. Tang, “LABERIO:
Dynamic load-balanced routing in OpenFlow-enabled
networks,” Proc. - Int. Conf. Adv. Inf. Netw. Appl.
AINA, pp. 290–297, 2013.

[9] Y. L. Lan, K. Wang, and Y. H. Hsu, “Dynamic load-
balanced path optimization in SDN-based data center
networks,” 2016 10th Int. Symp. Commun. Syst.

Networks Digit. Signal Process. CSNDSP 2016, pp. 0–
5, 2016.

[10] J. Liu and L. Butler, “A Simulation and Emulation
Study of SDN-Based Multipath Routing for Fat-tree
Data Center Networks,” pp. 3072–3083, 2014.

[11] A. Botta, A. Dainotti, and A. Pescapé, “A tool for the
generation of realistic network workload for emerging
networking scenarios,” Comput. Networks, vol. 56, no.
15, pp. 3531–3547, 2012.

[12] C. Wang, G. Zhang, H. Xu, and H. Chen, “An ACO-
based Link Load-Balancing Algorithm in SDN,” pp.
221–225, 2016.

[13] D. Bertsekas and R. Gallager, "Data Networks",
Chapter 6, Prentice Hall, 1992.

[14] Ryu 4.26 Documentation. [Online]. Available:
https://ryu.readthedocs.io/en/latest/index.html

[15] OpenFlow. [Online]. Available:
https://www.opennetworking.org/technical-
communities/areas/specification/open-datapath/

