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Abstract — The optimal control design of the ground-vehicle active suspension system is presented. The active 
suspension system is to improve the vehicle ride comfort by isolating vibrations induced by the road profile and 
vehicle velocity. The vehicle suspension system is approached by a quarter car model. Dynamic equations of the 
system are derived by applying Newton’s second law. The control law of the active suspension system is 
designed using linear quadratic regulator (LQR) method. Performance evaluation is done by benchmarking the 
active suspension system to a passive suspension system. Both suspension systems are simulated in computer. 
The simulation results show that the active suspension system significantly improves the vehicle ride comfort of 
the passive suspension system by reducing 50.37% RMS of vertical displacement, 45.29% RMS of vertical 
velocity, and 1.77% RMS of vertical acceleration. 
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I.  INTRODUCTION 

One of the purposes of applying the suspension 
system on a ground vehicle is to improve vehicle ride 
comfort [1]. The ride comfort is essential in modern 
vehicles. A suspension system works by isolating the 
vehicle from vibration induced by the vehicle velocity 
and road profile. Vehicle suspension systems are 
classified into three types, i.e., passive suspension 
system, semi-active suspension system, and active 
suspension system [1–5]. The passive suspension 
system is the conventional suspension system that 
consists of spring and damper. Both spring and 
damper have a fixed spring constant and fixed 
damping rate, respectively. A semi-active suspension 
system is similar to the passive suspension system, but 
damping rate of the damper is varying. The damping 
rate is high for low velocities but low for high 
velocities. An active suspension is another type of 
suspension system, where an active element is added 
to the spring and damper. The active element is an 
actuator to generate force for suppressing the 
vibration.  The actuator works based on control 
commands generated by a controller.  The controller 
calculated the control commands based on a state 
feedback control law to calculate the control 
command. Studies on suspension systems show that 

active suspension system resulted in the best 
performance followed by the semi-active suspension 
system and the passive suspension system [2–10]. 

The active suspension system becomes an 
interesting research topic due to the superiority of the 
suspension performance. Several research works on 
developing an active suspension system have been 
presented in the last five years [2, 7–9, 11–15]. The 
active suspension systems were developed by the 
following steps: modeling the vehicle suspension 
system dynamics, designing a state feedback control 
for the active suspension system, and evaluating the 
active suspension system performance through 
simulation and/or experimental tests. The modeling 
was done by applying physical laws. There are three 
models of vehicle suspension system: quarter-car 
model, half-car model, and full-car model. The 
quarter-car model is a one-dimensional (1D) model 
that only captures the heaving motion of the vehicle 
[2, 6, 15]. The half-car model is a two-dimensional 
(2D) model that can capture the heaving and pitching 
motions [16]. The full-car model is a three-
dimensional (3D) model that captures the heaving, 
pitching, and rolling motions of the vehicle [7]. The 
vehicle suspension system models divide the vehicle 
into two types of mass: sprung mass and unsprung 
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mass. The sprung mass is a mass of vehicle parts that 
are supported by the suspension system, for example 
body, frame, engine, interior, passengers, and cargo. 
The unsprung mass is mass of the vehicle parts that are 
not supported by the suspension system but by the 
tires, for example, wheels, tires, brake assemblies, and 
wheel shafts. Two masses of vehicles increase degree 
of freedom (DoF) of the model. The quarter car model 
is, therefore, to have two degrees of freedom (2-DoF), 
the half-car model to have 4-DoF, and the full car 
model to have 6-DoF.  

The higher DoF of suspension system gives a 
challenge in developing the controller of suspension 
systems. The suspension systems are either single-
input multi-output (SIMO) systems or multi-input 
multi-output (MIMO) systems. Therefore, dynamic 
equations of the vehicle suspension system are 
appropriately presented in the state-space form. Most 
of the studies on active suspension system applied 
multivariable control methods in developing the 
controller, for examples: linear quadratic regulator 
(LQR) [6, 17-19], linear quadratic Gaussian (LQG) 
[20-22], optimal preview control [7, 11, 23], H-infinity 
[12, 15], sliding mode control [9, 14, 24], and 
predictive control [8]. The studies show that the 
optimal control methods were intensively applied in 
the active suspension system development. The 
optimal control methods are including LQR, LQG, and 
optimal preview control. 

This paper presents a comprehensive study on 
developing an active suspension system using a linear 
quadratic regulator (LQR) method based on a quarter 
car model. The study includes modeling the 
suspension system, tuning the LQR cost function 
matrices, determining the suspension system 
characteristic, and evaluating the suspension system 
performance. The paper is organized as follows. The 
introduction is presented in Section I. Section II 
describes the method in developing the active 
suspension system, including modeling the active 
suspension system, state feedback control, and control 
design using LQR. Section III provides results of 
simulation where performance of the designed active 
suspension system performance is compared to 
performance of a passive suspension system. 
Discussion on the developing active suspension 
system and results are presented in Section IV. Finally, 
this study is concluded in Section V. 

II. RESEARCH  METHOD  

A. Suspension System Dynamics 

Figure 1 shows a model of a quarter car suspension 
system. The model has two masses: �� and ��, where 
the �� is the unsprung mass and the �� is the sprung 
mass. The suspension consists of three elements: a 
spring with a stiffness coefficient �� , a damper with 
damping coefficient �, and an actuator that generates 
force �. Tire of the car is modeled as a spring with 
stiffness ��. 

 

 

 

 

 

 

 

 

 

 

 

Dynamic equations of the suspension system are 
derived based on Newton's second law. Newton's 
second law states that forces working on an object are 
expressed by (1), 

    Σ � =  �� (1) 

Where � is the resultant forces working on the object, 
� is mass of the object, and � is an acceleration of the 
object. The quarter-car suspension system dynamics 
are derived as follows. Dynamic equation of the 
unsprung mass is given by (2), 

��(�� − ��)+ � + �(�̇� − �̇�)− ��(�� − ��)= ���̈�  

    (2) 

and rearranging it results in: 

�̈� =
�

� �
(�̇� − �̇�)−

�����

� �
�� +

��

� �
�� +

�

� �
� +

��

� �
��.  

(3) 

While the dynamics equation of the sprung mass is 
given by (4), 

−��(�� − ��)− � − �(�̇� − �̇�)= ���̈�           (4) 

and rearrange it results in: 

�̈� = −
�

� �
(�̇� − �̇�)−

��

� �
(�� − ��)−

�

� �
.            (5) 

The equations (3) and (5) are explicitly described the 
quarter car dynamic equations. For the (3) and (5), 
define the following system states, 

�� = ��, �� = ��, �� = �̇�,

�� = �̇�, � = ��.
   (6) 

Using the defined states, dynamics equations of the 
quarter car suspension system (4) and (5) can be 
expressed in a state-space form as follows, 

�̇ = �� + �� + ��     (7) 

where the  vector �  and matrices � , � , and �  are 
defined as follows, 
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Fig.1. a) A Model of Quarter-Car Suspension System. b) Free 

Body Diagram of The Quarter-Car Suspension System. 
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The notation � is the system states vector, �  is the 
system matrix, �  is the input matrix, � is the system 
input, �  is the disturbance matrix, and �  is the system 
disturbance. 

B. States Feedback Control 

Defining the system input �  in (7) equals to the 
following state feedback control, 

� = −��      (9) 

Where �  is the control gain matrix. Substituting (9) 
into (7) results in, 

�̇ = (� − �� )� + ��    (10) 

Which is known as a closed-loop system equation of 
the quarter-car suspension system. For the closed-loop 
system, defining  

�� = � − ��     (11) 

where ��  is the closed-loop system matrix and  
substituting it into (10) results in, 

�̇ = ��� + ��      (12) 

The state feedback control law (9) is designed to 
obtain a control gain matrices �  such that closed-loop 
system matrix ��  Is Hurwitz [25, 26]. The next 
subsection will discuss a control design using a linear 
quadratic regulator (LQR) method to find the � .  

C. Linear Quadratic Regulator  

Linear quadratic regulator (LQR) is a part of 
optimal control [27]. The optimal control provides a 
control design method for a multivariable system, 
where the control gain matrix is determined through 
minimizing a cost function. The LQR is specified by a 
linear quadratic cost function, and the system states 
are assumed to be available. The control design of the 
active suspension system, (7) using LQR is explained 
as follows.  

Define the following cost function for (7), 

�=
�

�
∫ (���� + ����) ��
�

�
  (13) 

Where � is the cost function, � is a symmetric positive 
semi-definite matrix, and �  is a positive definite 
matrix. The optimal control problem is to find � such 
that the � is minimized. Solution for the optimal 
control problem is a state feedback control given as 
follows [27], 

� = −��     (14) 

Where �  is the control gain matrix. Through a 
calculation based on unconstrained optimization, it has 
resulted: 

� = ������    (15) 

Where � is a symmetric matrix. The (15) shows that 
the control gain �  is determined by the matrices � , � , 
and � . The matrix �  is obtained through solving the 
following algebraic Riccati equation: 

��� + �� − �������� + � = 0.  (16) 

The (16) has one unknown matrix, which is � , and 
four known matrices, which are �, � , �, and � . The 
matrices � and �  are the known matrices given by the 
suspension system dynamics, while the matrices � and 
�  are defined in the control design process.  

The �  and �  are known as the control design 
parameters of the LQR method. Since the system (7) 
has four states and one input, the matrix � is a four-
by-four matrix, and the matrix �  is a one-by-one 
matrix or a scalar. Define � as a diagonal matrix given 
as follows: 

� = �

�� 0
0 ��

0 0
0 0

0 0
0 0

�� 0
0 ��

�   (17) 

has resulted substituting it into (13) results in: 

�=
1

2
� (�� ��

� + �� ��
� + �� ��

� + �� ��
� + ����) ��

�

�

 

     (18) 

The (18) shows that the diagonal elements of matrix � 
and the scalar �  become the weighting factor for the 
system states and the control input in the cost function, 
respectively. 

III. RESULT 

The performance of the designed active suspension 
system is evaluated through computer simulation. The 
simulation diagram is shown in Fig.2. The 
performance evaluation is done by benchmarking the 
active suspension system performance to a passive 
suspension system performance. Therefore, two 
simulation programs are created. One simulation 
program is to simulate a vehicle equipped with the 
active suspension system and another simulation 
program is to simulate a similar vehicle but equipped 
with the passive suspension system. Parameters of the 
vehicle, the active suspension, and the passive 
suspension are given in Table I. 
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Fig.2. Diagram of simulating the active and passive 

suspension system 
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The active suspension system is designed using the 
LQR method, where the control law is given in (14). 
The control gain matrix of (14) is designed by 
selecting the matrices �  and � , and the following 
matrices are selected in this study: 

� = �

1 0
0 10�

0     0
0     0

0 0
0 0

10� 0
0 10�

� and  � = 1. (19) 

The matrix elements �(1,1)  and �(2,2)  are the 
weighting factor of ��  and �� . The value of �(2,2) 
higher than �(1,1) indicates that the �� is desired to 
be more minimized than ��. Similarly for �(3,3) and 
�(4,4) where the �� is desired to be more minimized 
than the ��. 

Applying the active suspension system (7) with the 
system parameters given in Table I and the cost 
function matrices �  and �  defined in (17) into the 
LQR algorithm results in the following control gain 
matrix: 

� = [11700 −224.6 5 × 10�� −9400]     (20) 

Substituting the resulted �  into (11) yields in the 
closed-loop system matrix where the active suspension 
system characteristic is determined by eigenvalues of 
the closed-loop system matrix.  

Eigenvalues of the closed-loop active suspension 
system are presented in Table II. The active 
suspension system has two pairs of complex conjugate 
eigenvalues. A system with two pairs of complex 
conjugate eigenvalues will oscillate in two oscillation 
modes. Each oscillation mode is characterized by a 
natural frequency and a damping ratio that can be 
determined based on the system eigenvalues. Using 
the theorem 1, the characteristics of both oscillations 
modes in the active suspension system are calculated, 
and the results are presented in Table 2. 

Theorem 1. A system that has a pair of complex 
conjugate eigenvalues � = − � ±  ��  is going to 
oscillate with the following frequency and damping 
ratio: 

� = ��� + �� 

� =
−�

√�� + ��
 

where �  is the oscillation frequency, and �  is the 
damping ratio [28]. 

 

 

 

 

 

 

 

 

 

 

 

Performance of the active suspension system is 
evaluated by comparing it to a passive suspension 
system. A passive suspension system is similar to an 
active suspension system except for the active 
element. The passive suspension system consists of 
spring and damper. The dynamics of the passive 
suspension system are derived in the same way as the 
derivation of active suspension system. The free-body 
diagram shown in Fig.1 is applied in deriving the 
passive suspension system by neglecting the active 
element � . Derivation of the passive suspension 
system dynamics results in the following state 
equation: 

�̇ = �� + ��     (23) 

where � is the system matrix, and �  is the disturbance 
matrix �, and both are the same as defined in (8). 

The characteristic of the passive suspension system 
is determined by the eigenvalues of passive suspension 
system. Substituting the passive suspension system 
parameters given in Table I into (8) and calculating the 
eigenvalues of � results in the eigenvalues of passive 
suspension system as listed in Table II. Similar to the 
active suspension system, the passive suspension 
system has two pairs of complex conjugate 
eigenvalues such that it has two oscillation modes. The 
frequency and damping ratio of each oscillation modes 
in the passive suspension system are listed in Table 2. 

Both suspension systems are simulated through 
passing a bump road profile. The bump road profile is 
modeled by the following mathematics function, 

�� = �

0, for 0 < �� < 5        

sin(�� − 5), for 5 ≤ �� ≤ 5 + �
0, for �� > 5 + �        

 (24) 

where ��  is the horizontal road position and �� is the 
road elevation. Fig.3 shows the bump road profile. 

Table 1. Vehicle and Suspension Parameters [6] 
 

Parameter Symbol Value Unit 

Vehicle 

Unsprung mass �� 28.58 kg 

Sprung mass �� 288.9 kg 

Tyre stiffness �� 1.559 × 10� N/s 

Active Suspension 

Spring stiffness �� 1 × 10� N/s 

Damping coefficient � 850 Ns/m 

Passive Suspension 

Spring stiffness �� 19.96 × 10� N/s 

Damping coefficient � 1300 Ns/m 

Table 2. Characteristic of the Active System  
and the Passive Suspension System 

 

Parameter Mode 1 Mode 2 

Active Suspension   

Eigenvalues (�) − 10.63 ± �10.15 − 17.70 ± �91.81 

Frequency (�) 14.7 93.5 

Damping ratio (�) 0.72 0.19 

Passive suspension   

Eigenvalue (�) − 1.81± �7.72  − 23.19 ± �73.85 

Frequency (�) 7.93 77.41 

Damping ratio (�) 0.227 0.3 
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Simulation results of both active suspension 
systems and passive suspension systems are presented 
as follows. The unsprung-mass vertical motions of 
both active and passive suspension systems are shown 
in Fig.4. The figure shows that the vertical 
displacement, vertical velocity, and vertical 
acceleration of unsprung mass of both active and 
passive suspension systems are not too different. The 
unsprung mass is representing the wheel assy. The 
wheel has direct contact with the road disturbance 
through the tyre. The tyre is modeled as a spring. The 
energy of the road disturbance is transmitted to the 
unsprung mass without any energy dissipation. This 
results in the vertical motions of unsprung mass follow 
the road disturbance.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The road-disturbance energy received by the 
unsprung mass is continued to be transmitted to the 
sprung mass through the vehicle suspension. The 
vehicle suspension consists of spring and damper, and 
an active element for the active suspension. The 
damper dissipates the transmitted energy such that the 
received road-disturbance energy at the sprung mass is 
less than at the unsprung mass. This is shown by the 
vertical motions of sprung mass has less amplitude 
than the unsprung mass motions, as presented in Fig.5. 
The active element of active suspension system 

generates force to counter the road-disturbance energy. 
The active element improves dissipating road-
disturbance energy. It makes the less road-disturbance 
energy received by the sprung mass on the active 
suspension system than the passive suspension system. 
This is confirmed by the simulation result shown in 
Fig.5.  The sprung-mass vertical motion is stabilized 
faster using the active suspension system then using 
the passive suspension system. The sprung mass 
experiences less oscillation using the active suspension 
system than the passive suspension system. The less 
oscillating indicates, the less energy on the system.  
This implicates that the active suspension system has 
been dissipated the road-disturbance energy more than 
the passive suspension system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV. DISCUSSION 

Simulations of a quarter-car suspension system 
passing a bump road profile has been carried out in the 
previous section. Figure 4 and Fig.5 show the time 
response of unsprung mass and sprung mass when two 
identically vehicles but different suspension systems 
passing on a bump road profile. Both figures provide a 
qualitative representation of the suspension system's 
performance. Suspension system performance can be 
evaluated based on such kind of figures. However, it is 
quite difficult to appraise the better suspension system 
performance based on Fig. 4. A quantitative 
representation is required for better evaluation. Root 
mean square (RMS) of the unsprung mass and sprung 
mass motions are commonly used in the qualitative 
representations of suspension system performance [7].  
The less RMS indicates that the suspension system has 
a better performance. 

Fig.5. Vertical movement of the sprung mass. 

 

 
Fig.3. Bump Road Profile. 

 
Fig.4. Vertical Movement of The Unsprung Mass. 
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Definition 1. RMS of a measured state � is defined by 
the following equation, 

�� =
1

�
���

�

�

���

 

where ��  is the RMS of the measured state, �  is the 
number of sampling data, and ��  is the value of � at 
the ��� sampling.   

The RMS calculations are done for the vertical 
motions of both sprung masses for the cases of using 
active suspension system and passive suspension 
system. The calculated RMS of vertical motions 
includes vertical displacement, vertical velocity, and 
vertical acceleration. The resulted RMS is normalized 
to the RMS of using passive suspension systems. This 
is to show a comparison of the active suspension 
system performance relative to the passive suspension 
system performance. 

 

 

 

 

 

 

 

Table 3 shows the RMS of vertical motions of the 
unsprung mass and the sprung mass that is calculated 
based on the vertical motion plotted in Fig. 4 and Fig. 
5. For the unsprung mass vertical motion, the active 
suspension system results in a slightly higher RMS 
than the passive suspension system. The RMS 
unsprung mass vertical motion of using active 
suspension system increased 6.15% on vertical 
displacement, 11.32% on vertical velocity, and 1.8% 
on vertical acceleration compared to the one using 
passive suspension system. However, for the sprung 
mass vertical motion, the active suspension system 
results in much lower RMS than the passive 
suspension system, especially on the vertical 
displacement and the vertical velocity. The active 
suspension system shows significant improvement in 
isolating the sprung mass motion due to the road 
disturbance than the passive suspension system. The 
active suspension system decreased the RMS of 
sprung mass vertical motion significantly that includes 
50.37% on vertical displacement, 45.29% on vertical 
velocity, and 1.77% on vertical acceleration lower 
than the passive suspension system. The reduction of 
vertical acceleration is very small compared to the 
reduction of vertical displacement and the vertical 
velocity. This is because the matrix �  does not 
accommodate a weighting factor for minimizing the 
vertical acceleration. 

Although applying the active suspension system 
result in increasing RMS of unsprung mass motion, 
but the increment is not too much. The maximum 

increment of the RMS was 11.32% on vertical velocity 
of the unsprung mass. The increasing RMS at the 
unsprung mass does not decrease the vehicle ride 
comfort as the passenger seats are located on the 
sprung mass. The vehicle ride comfort is only 
determined by the sprung mass motions. Therefore, 
the simulation results show that the vehicle ride 
comfort was improved significantly using the active 
suspension system.  

V. CONCLUSION 

A study on the active suspension system of ground 
vehicles has been presented. The suspension system 
was modeled by a quarter car model. The dynamics of 
the system were derived and represented in a state-
space form. LQR was applied in designing a control 
law of the active suspension system. The computer 
simulation was done to evaluate performance of the 
active suspension system concerning a passive 
suspension system. The simulation results showed 
that the active suspension system has much better 
performance than the passive suspension system. The 
active suspension system has isolated the vehicle 
body mass better than the passive suspension system. 
The active suspension system reduced the vertical 
motion of sprung mass significantly by reducing 
50.37% the vertical displacement, 45.29% the vertical 
velocity, and 1.77% the vertical acceleration than 
using the passive suspension system.  

The simulation results also showed that the 
unsprung-mass vertical motion was increased by 
applying the active suspension. The increment was  
6.15% on vertical displacement, 11.32% on vertical 
velocity, and 1.8% on vertical acceleration. However, 
the increment of unsprung-mass vertical motion is 
relatively small compared to the reduction of sprung-
mass vertical motion. Moreover, the vehicle ride 
comfort is determined by the sprung mass motion but 
not the unsprung mass motion. Therefore, the active 
suspension system is promising a benefit of better ride 
comfort than the passive suspension system. 
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