

JURNAL INFOTEL

Informatics - Telecommunication - Electronics

Website Journal: http://ejournal.st3telkom.ac.id/index.php/infotel

ISSN: 2085-3688; e-ISSN: 2460-0997

 114

Jurnal Infotel Vol.11 No.4 November 2019

https://doi.org/10.20895/infotel.v11i4.459

Effort Estimation For Software Development On Mobile

Application of 'Tangkap Reptil'

Condro Kartiko*1, Novanda Alim Setya Nugraha2, Dery Sudrajat3
1,3 Department of Software Engineering, Institut Teknologi Telkom Purwokerto

2 Department of Informatics, Institut Teknologi Telkom Purwokerto
1,2,3 Jl. D.I Panjaitan, No.128, Purwokerto 53147, Indonesia

*Corresponding email: condro.kartiko@ittelkom-pwt.ac.id

Received 26 November 2019, Revised 16 December 2019, Accepted 19 December 2019

Abstract — An essential aspect of planning and management of software design projects is to estimate work time,

costs, and human resources. The calculation solution made in this study aims to assist in calculating the estimated

time of developing a reptile capture application using the Use Case Point (UCP) method. The UCP method is a

software effort estimation method that shows better performance compared to other methods. The result of this

research is the risk of software development on the mobile application of 'Tangkap Reptil' has a small chance, can

be done in a relatively short time, and does not require a lot of resources. The development of mobile-based

“Tangkap Reptil” applications in the case study used in this study took approximately 3,233,608 hours of work,

with a relatively low risk of project development. If it is will assume in one day worked by one person has 8 hours

of work, so the total duration of time required for 404,201 days or 13.47 months or 1.12 years.

Keywords – Use Case Point, Effort Estimation, Aplikasi Android

All rights reserved.

I. INTRODUCTION

One exciting task in the software development life

cycle is the estimations of effort. Software effort

estimation is one important aspect that determines the

success of a software project. Many software projects

fail due to poor project management [1], including the

calculation of bad software estimates. Appropriate

estimation is critical to the success of a software project.

If the estimate is too low than it should be, it will result

in incomplete software projects due to time and cost.

But if the estimate is too high, it will cause the software

project to be unrealistic to be carried out.

Although project effort estimation plays a very

crucial role in the success of a project, there are still

many problems that exist in software effort estimation.

For example, lack of information on a software project

at the beginning of the project, making it difficult to

estimate the software project. Another problem is the

sustainability of the project, which is sometimes still

not certain, thus requiring the decision holder to make

resource efficiency.

In recent years, software effort estimation has

received a considerable amount of attention from

researchers and became a challenge for the software

industry. In the last two decades, many researchers and

practitioners proposed statistical and machine learning-

based models for software effort estimation [2].

Software effort estimation can use machine learning

models such as Linear Regression (LR), Support Vector

Machine (SVM), K-Nearest Neighbor (KNN), Multi-

Layer Perceptron Neural Network (MLPNN),

Probabilistic Neural Network (PNN), Recurrent Neural

Network (RNN) [3]. Some cost model methods for

estimating projects such as COCOMO, Function Point

Analysis (FPA), Mark II Function Points, and COSMIC

[4] are widely applied in the industry. These models use

parametric estimation models in their implementation.

The model still has a weakness that is needed by people

who have experience or are very familiar with

calculating points for each function of the estimated

software [1]. The development of methods for

evaluating software that can overcome these

weaknesses includes Use Case Point (UCP) estimation.

The UCP was designed to carry out estimations at the

Copyright © 2019 JURNAL INFOTEL

ISSN : 2085-3688; e-ISSN : 2460-0997

Effort Estimation For Software Development On Mobile Application of 'Tangkap Reptil'

 115

Jurnal Infotel Vol.11 No.4 November 2019

https://doi.org/10.20895/infotel.v11i4.459

start of a software project [5]. UCP is also a

development of Function Point Analysis for object-

oriented applications [6] [7]. The UCP method is an

initial estimation based on a use case diagram, where

UCP can be used to understand problems that might

occur in software, project size estimates, and general

system architecture. Software effort estimation based

on UCP methods provides only fixed estimation value,

which cannot deal with the uncertain and ambiguous

conditions of the particular software [8]. This method

estimates the number of attempts based on the

complexity of the use case [6].

Several previous studies on UCP have reported the

following results. In [9], a comparison between

estimated efforts using UCP and actual efforts has a

deviation rate of 19%. In contrast, estimates by experts

have a deviation rate of 20%. Two other studies

reported that UCP had a deviation rate of 6% [10] and

9% [11] compared to actual efforts. UCP can also be

used to estimate the costs involved in developing large

and medium scale software projects [12] and enterprise

resource planning software [13]. Research [14] makes

an estimated inventory system of goods using the UCP

estimation method. Thus, it seems that UCP can be used

reliably for effort estimation.

The purpose of this study is to estimate reptile

encyclopedia applications using the UCP estimation

method. The case study used is in the development

project of mobile devices based on reptile capture

applications. The results of this study are expected to be

one of the examples and references for developing other

mobile-based applications. So that people who will

develop a mobile-based application have a clear general

picture of the estimated size and general architecture of

the mobile-based application.

II. RESEARCH METHOD

Estimation in the UCP method starts with

measuring the complexity of the actor (unadjusted actor

weight) and use case (unadjusted use case weight) in the

system. The next step is to measure the technical

complexity (technical complexity factor) and

environmental (environmental factor) system used in

the development of software projects. After that,

measurements on the UCP, productivity factor, and

effort estimation. The details of the UCP process flow

are as follows.

A. Actor Complexity

The division of actor complexity in the UCP

measurement method into three categories, among

others

a) Simple: represent systems that communicate

with other systems using the Application

Programming Interface (API)

b) Medium: represent systems that communicate

with other actors using special protocols such as

HTTP and FTP, or humans who communicate

with the system using the terminal console.

c) Complex: humans who use the Graphical User

Interface (GUI) to communicate with the

system.

For each class described previously, an Unadjusted

Actor Weight (UAW) calculation is calculated for the

weight of each actor, where the weighting rules are

three for complex actors, two for medium actors and

one for simple actors. For the calculation of the UAW

formula is as follows:

UAW: ∑ weight (c) ×number of actors (c) (1)

wherein:

𝑐 : Class of the actors concerned (simple, medium,

complex)

B. Use Case Complexity

The next step is to measure the complexity of the

use case. In contrast to actor complexity, the use case

complexity is estimated based on the transaction

complexity of each use case. Transactions in the use

case are activities/scenarios contained in each use case.

The complexity of the transaction from the use case is

divided into three categories, i.e.

use case complexity {

simple if transaction < 4
average if ≤4 transaction ≤7

complex if transaction > 7

For each class described the use case complexity

calculation is done by calculating the Unadjusted Use

Case Weight (UUCW), where the weighting rule is five

for the simple use case, 10 for the average use case and

15 for the complex use case. For the calculation of the

UUCW formula is as follows

UUCW= ∑ weight (c)×number of use case (c) (2)

wherein:

𝑐 : The class of the use case in question (simple,

medium, complex)

C. Technical Factors and Software Development

Environment

The UCP method uses 21 measurements to measure

the technical factors and system development

environment, which is divided into 13 parameters to

measure the system technical (technical complexity

factors) and eight parameters to measure the system

development environment (environmental factors).

Details of the technical complexity factor are shown in

Table 1, and the environmental factor (EF) is shown in

Table 2.

Table 1. Technical Complexity Factors

Technical Complexity Factors

Factor Description Weight

T1 Distributed System 2

T2 Performance 1

ISSN : 2085-3688; e-ISSN : 2460-0997

Effort Estimation For Software Development On Mobile Application of 'Tangkap Reptil'

 116

Jurnal Infotel Vol.11 No.4 November 2019

https://doi.org/10.20895/infotel.v11i4.459

Technical Complexity Factors

Factor Description Weight

T3 End-User Efficiency 1

T4 Complex processing 1

T5 Reusable code 1

T6 Easy to install 0,5

T7 Easy to use 0,5

T8 Portable 2

T9 Easy to change 1

T10 Concurrent 1

T11 Security features 1

T12 Access for third parties 1

T13 Special training required 1

Table 2. Environmental Complexity Factors

Environmental Complexity Factors

Factor Description Weight

F1 Distributed System 1,5

F2 Performance 0,5

F3 End-User Efficiency 1

F4 Complex processing 0,5

F5 Reusable code 1

F6 Easy to install 2

F7 Easy to use -1

F8 Portable -1

The influence of Technical Complexity Factor

(TCF) on the UCP measurement method is in the range

from zero (0) to five (5), where the higher the influence

of the factors concerned in the project work, the higher

the estimated value of the effect. TCF calculation is

multiplying the weight of the influence assessment,

with the weighting provisions in Table 1. The formula

for UCF calculation is as follows.

TCF = 0.6 + (0.01 × ∑ factor weighti ×13
i=1

value of influencei) (3)

While the influence of EF is done the same

calculation with TCF, which gives an estimated value

of each factor in accordance with its influence in the

range of zero (0) to five (5) then multiplied by the

weight of each factor according to Table 2. The formula

for EF calculation is as follows.

EF = 1.4 + (−0.03 × ∑ factor weighti ×8
i=1

value of influencei) (4)

D. UCP

To calculate the UCP, an Unadjusted Use Case

Point (UUCP) calculation must be added by adding an

UAW with an UUCW. The formula for calculating

UUCP is shown in (5).

UUCP = UAW + UUCW (5)

After UUCW is obtained, a UCP calculation is

performed using the formula shown in (6).

UCP: UUCP × TCF × EF (6)

wherein:

UUCP : Unadjusted Use Case Points

TCF : Technical Complexity Factors

EF : Environment Factor

E. Productivity Factor dan Effort Estimation

The results of the effort estimation value from the

multiplication between the productivity factor and the

UCP value. To get the benefit of productivity factor

according to Schneider and Winters calculations, if the

EF value is  two, the productivity factor value is 20 for

each UCP, if the EF value is in the range of three and

four, the productivity factor value is 28 for each UCP,

if the EF value is more than 4, the productivity factor

value used is 36 for each UCP [15].

III. RESULT

In this study, the use of UCP techniques to study in

general, the efforts and risks in mobile-based "Tangkap

Reptil" application software projects. Fig. 1 shows the

flow diagram in this study regarding the

implementation of the UCP technique.

UAW

UUCW
UUCP

TCF

EF

UCP

ER
Effort

Fig 1. The Methodology For Determining Software Effort

Estimation

Use the mobile-based reptile capture application

case in this research case study in Fig. 2. Based on the

mobile-based "Tangkap Reptil", the application has 25

use case cases with two main actors, namely general

and admin. General user actors have ten use cases. Use

cases for public users, among others see the application

in two languages, look at the main menu, see the type

of reptile, see a detailed description of reptiles, see the

news, see FAQ, see the event, see the video, see the

reptile community, and access the help reptile. The

admin user actor has 15 use cases. Use cases for admin

users, among others enter reptile type, change reptile

type, removing reptile type, enter news, change news,

delete news, enter the reptile community, change the

reptile community, delete the reptile community, enter

event, change event, delete event, enter FAQ, change

FAQ, and delete FAQ. The steps in the UCP estimation

process in mobile-based reptile capture applications are

as follows:

ISSN : 2085-3688; e-ISSN : 2460-0997

Effort Estimation For Software Development On Mobile Application of 'Tangkap Reptil'

 117

Jurnal Infotel Vol.11 No.4 November 2019

https://doi.org/10.20895/infotel.v11i4.459

Fig 2. Use case "Tangkap Reptil" Application Based On Mobile

A. Actor Complexity

Calculation of the extended UCP method starts with

determining the value of the Unadjusted Actor Weight.

Actors in this system are divided into two (2), where the

two actors in mobile-based "Tangkap Reptil"

applications are human, so they are classified into

complex actors that weight three (3), so the value of

UAW is 6. Details of the calculation of UAW in

"Tangkap Reptil" applications are listed in Table 3.

Table 3. Unadjusted Actor Weight

UAW

Class Actor

Amount

Weight Number of Actors

× Weight

Simple 0 1 0

Medium 0 2 0

Complex 2 3 6

Total UAW 6

B. Use Case Complexity

The mobile-based "Tangkap Reptil" application in

this study has 25 use cases which are looking at the

main menu, seeing reptile types, seeing detailed reptile

descriptions, viewing news, viewing FAQ, viewing

events, viewing videos, viewing reptile communities,

accessing reptile help, viewing applications in two

language, enter reptile types, change reptile types,

delete reptile types, enter news, change news, delete

press, enter reptile communities, change reptile

communities, delete reptile communities, enter events,

change events, delete occurrences, insert FAQ, change

FAQ, and delete the FAQ. The 25 use cases will be

divided into three classes, namely simple, average, and

complex, based on the number of transactions

contained in it to get an UUCW. Details of the use case

distribution based on its complexity are shown in Table

4, and UUCW results are shown in Table 5.

Table 4. Distribution of Use Case Complexity

Use Case Transaction Class

see the application in two
languages

7
average

look at the main menu 2 simple

see the type of reptile 2 simple

see a detailed description of

reptiles
2

simple

see the news 4 average

see FAQ 1 simple

see event 1 simple

see the video 1 simple

see the reptile community 1 simple

access the help reptile 7 average

enter reptile type 3 simple

change reptile type 3 simple

removing reptile type 3 simple

enter news 3 simple

change news 3 simple

delete news 3 simple

enter the reptile community 3 simple

change the reptile community 3 simple

delete the reptile community 3 simple

enter event 3 simple

change event 3 simple

delete event 3 simple

enter FAQ 3 simple

change FAQ 3 simple

delete FAQ 3 simple

Next, determine the value of UUCW obtained by

multiplying the weight by the number of actors

according to the Use Case type. UUCW calculations

yield a total of 140, presented in Table 5.

ISSN : 2085-3688; e-ISSN : 2460-0997

Effort Estimation For Software Development On Mobile Application of 'Tangkap Reptil'

 118

Jurnal Infotel Vol.11 No.4 November 2019

https://doi.org/10.20895/infotel.v11i4.459

Table 5. Unadjusted Use Case Weight

UUCW

Class
Number of

Use Cases
Weight

Number of Use

Case × Weight

Simple 22 5 110

Average 3 10 30

Complex 0 15 0

Total UUCW 140

C. Technical Factors and Software Development

Environment

The next process is to calculate the TCF and EF.

The weighting of the factor influence estimation from

TCF and EF is carried out in the range of zero (0) to five

(5), where the higher the influence/impact of these

factors, the higher the weight of the estimation. Details

of TCF weighting can be seen in Table 6.

Table 6. Technical Complexity Factors

Technical Complexity Factors

Factor Description Weight Impact
Weight

× impact

T1
Distributed
System

2 2 4

T2 Performance 1 5 5

T3
End-User
Efficiency

1 3 3

T4
Complex

processing
1 1 1

T5 Reusable code 1 4 4

T6 Easy to install 0,5 4 2

T7 Easy to use 0,5 4 2

T8 Portable 2 3 6

T9
Easy to
change

1 2 2

T10 Concurrent 1 2 2

T11
Security
features

1 3 3

T12
Access for

third parties
1 2 2

T13

Special

training
required

1 2 2

Total Factor 38

From Table 6, the TCF value is obtained

𝑇𝐶𝐹 = 0.6 + (0.01 × 38)

= 0.98

Whereas the details of EF weighting are shown in Table

7.

Table 7. Environmental Complexity Factors

Environmental Complexity Factors

Factor Description Weight Impact
Weight

× impact

F1

Familiarity

with standart
process

1,5 3 4,5

F2
Application

experience
0,5 2 1

F3

Object-

oriented
experience

1 3 3

F4
Lead analyst

capability
0,5 3 1,5

F5 Motivation 1 1 1

F6
Stable
requirements

2 3 6

F7
Part-time
workers

-1 4 -4

F8

Difficult

programming
language

-1 4 -4

Total Factor 9

From Table 7, the EF value is obtained

𝐸𝐹 = 1.4 + (−0.03 × 9)
= 1.13

D. UCP

The next stage is to calculate the UCP by

multiplying UUCW with TCF and EF; the results of the

UUCP calculation are as follows.

𝑈𝑈𝐶𝑃 = 𝑈𝐴𝑊 + 𝑈𝑈𝐶𝑊
 =: 6 + 140
 =: 146

So, the UCP value is as follows

𝑈𝐶𝑃 = 𝑈𝑈𝐶𝑃 × 𝑇𝐶𝐹 × 𝐸𝐹
 = 146 × 0,98 × 1,13
 = 161,6804

E. Productivity Factor dan Effort Estimation

Based on the calculation of the EF value, the

productivity value used is 20 hours for each UCP,

where the risk of project work is relatively low, and the

effort estimation of work is 3,233,608 hours of work.

IV. DISCUSSION

Fig. 1 shows that the proposed methodology for

determining software effort estimation. This

methodology is for determining efforts using UCP.

Also, to get software development time, efforts made

using UCP will be distributed to each feature. The

process aims to get effort into each feature.

The first step in this research is to get the complexity

of the actors or UAW stated in Section II.A. There are

ISSN : 2085-3688; e-ISSN : 2460-0997

Effort Estimation For Software Development On Mobile Application of 'Tangkap Reptil'

 119

Jurnal Infotel Vol.11 No.4 November 2019

https://doi.org/10.20895/infotel.v11i4.459

several categories for actors of each use case, including

simple, medium, or complex. The grouping is useful for

categorizing and managing each actor; the presentation

in Table 3 shows the detailed criteria.

The second step in this research is to get the use case

or UUCW complexity stated in Section II.B. UUCW

expresses the complexity of the use case as measured

by the number of transactions in the use case. Each use

case in a categorized system is simple, average, or

complex. Details of these criteria are in Table 4. The

UUCW calculation results are the sum of the weights of

each use case presented in Table 5.

The third step in this research is to obtain the TCF

stated in Section II.C. TCF is used to estimate software

size to consider system technical considerations. TCF

determination by assigning weights between 0

(irrelevant factors) to 5 (essential factors) for each of

the 13 technical factors listed in Table 1. Acquisition of

TCF as a result of the calculation of the weight of each

technical factor listed in Table 6.

The fourth step in this research is to obtain the UC

stated in Section II.D. UCP is obtained by multiplying

UUCP, TCF, and ECF. The final step in this research is

effort calculation. Getting the value of effort by

multiplying the value of UCP and ER constant in staff /

UCP hours stated in Section II.E. The amount of effort

needed to develop Reptile Capture mobile application

software is in Section III.E.

V. CONCLUSION

Based on the process and steps in this research, we

conclude that the acquisition of estimates for small-

scale software development projects can use UCP.

They were starting from the acquisition of UAW value

of 6 and UUCW of 140. The two values are to calculate

UUCP, which results are 146. Furthermore, calculation

of the correlation between UUCP values, TCF values of

0.98, and EF values of 1.13 are added to produce UCP

amounted to 161.6804. The development of mobile-

based “Tangkap Reptil” applications in the case study

used in this study took approximately 3,233,608 hours

of work, with a relatively low risk of project

development. If it is will assume in one day worked by

one person has 8 hours of work, so the total duration of

time required for 404,201 days or 13.47 months or 1.12

years. If it is assumed to work with a team of three

people working hours of 30 hours per week, then this

project should be completed in 36 workweeks.

In general, the risk of developing a mobile-based

reptile capture application is not high, the processing

time is relatively short, and the team required is not

much. This research can be improved by measuring the

actual results of making the whole system and using the

UCP method for estimating other mobile-based

application models in Indonesia so that it can be

estimated the average effort needed in making a mobile

application.

ACKNOWLEDGMENT

Thank you to the Directorate of Research and

Community Service of the Directorate General of

Research and Development Strengthening Ministry of

Research Technology and Higher Education of the

Republic of Indonesia for providing financial support in

the Beginner Lecturer Research scheme so that this

research can be carried out.

REFERENCES

[1] P. P. Jena and S. Mishra, “Survey report on software

cost estimation using use case point method,” Int. J.

Comput. Sci. Eng. Technol., vol. 5, no. 4, pp. 280–287,

2014.

[2] N. Ghatasheh, H. Faris, I. Aljarah, and R. M. H. Al-

Sayyed, "Optimizing software effort Estimation models

using firefly algorithm," Journal of Software

Engineering and Applications, vol. 8, pp. 133-142,

2015.

[3] S. Shukla and S. Kumar, "Applicability of neural

network based models for software effort estimation,"

in 2019 IEEE World Congress on Services

(SERVICES), Milan, 2019.

[4] A. Abran, S. Oligny, C. Symons, D. S. Pierre, and J. M.

Desharnais, "Functional size measurement methods -

COSMIC-FFP: design and field trials," in FESMA-

AEMES Software Measurement Conference 2000,

2000.

[5] M. M. Kirmani and A. Wahid, "Use case point method

of software effort estimation: a review," International

Journal of Computer Applications, vol. 116, no. 15, pp.

43-47, 2015.

[6] G. Karner, “Resource estimation for objectory

projects,” Objective Systems SF AB, 1993.

[7] G. I. Ibarra and P. Vilain, “Software estimation based

on use case size,” in Brazilian Symposium on Software

Engineering, 2010, pp. 178-187.

[8] J. F. Vijay, “Knowledge based non-functional software

distinguishing quality effort estimation using fuzzy use

case point approach,” International Journal of

Knowledge Management Studies, vol. 10, no. 1, pp. 21-

32, 2019.

[9] B. Anda, “Comparing effort estimates based on use

cases with expert estimates,” in Empirical Assessment

in Software Engineering(EASE), Keele UK, 2002, p. 13.

[10] S. Nageswaran. (2001, June)

Test_Effort_Estimation.pdf.[Online].

[11] E. R Carrol, “Estimating software based on use case

points,” in Object Oriented Programming Systems

Languages and Applications (OOPSLA) Conference,

San Diego, 2005, pp. 257–265.

[12] K. Shaleh, “Effort and cost allocation in medium to

large software development project,” International

Journal of Computer, vol. 5, no. 1, pp. 74-79, 2011.

[13] G. F. Prassida, A. H. N. Ali, and Sholiq, “Estimasi biaya

pembuatan modul enterprise resource planning (erp)

untuk unit bisnis pabrik gula di pt. perkebunan xyz

dengan metode use case point,” Jurnal Teknik Pomits,

vol. 1, no. 1, pp. 1-6, 2012.

ISSN : 2085-3688; e-ISSN : 2460-0997

Effort Estimation For Software Development On Mobile Application of 'Tangkap Reptil'

 120

Jurnal Infotel Vol.11 No.4 November 2019

https://doi.org/10.20895/infotel.v11i4.459

[14] R. Adhitama and C. Kartiko,” Effort estimation

menggunakan metode use case point untuk

pengembangan perangkat lunak,” Journal of

Informatics, Information System, Software Engineering

and Applications (INISTA), vol. 1, no. 1, pp. 55-62,

2018.

[15] G. Schneider and J. P. Winters, Applying Use Cases: A

Practical Guide (2nd Edition), Boston, Massachusetts:

Addison-Wesley Professional, 2001.

