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Abstract — Object detection gives a computer ability to classify objects in an image or video. However, high specified 
devices are needed to get a good performance. To enable devices with low specifications performs better, one way is 
offloading the computation process from a device with a low specification to another device with better specifications. This 
paper investigates the performance of object detection strategies on all-in-one Android mobile phone computation versus 
Android mobile phone computation with computational offloading on Nvidia Jetson Nano.  The experiment carries out the 
video surveillance from the Android mobile phone with two scenarios, all-in-one object detection computation in a single 

Android device and decoupled object detection computation between an Android device and an Nvidia Jetson Nano. Android 
applications send video input for object detection using RTSP/RTMP streaming protocol and received by Nvidia Jetson Nano 
which acts as an RTSP/RTMP server. Then, the output of object detection is sent back to the Android device for being 
displayed to the user. The results show that the android device Huawei Y7 Pro with an average FPS performance of 1.82 and 
an average computing speed of 552 ms significantly improves when working with the Nvidia Jetson Nano, the average FPS 
becomes ten and the average computing speed becomes 95 ms. It means decoupling object detection computation between an 
Android device and an Nvidia Jetson Nano using the system provided in this paper successfully improves the detection speed 
performance.  
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All rights reserved.

I.  INTRODUCTION 

Object detection usage has been growing rapidly in 

recent years. Object detection gives computers the 

ability to recognize many things on input in the form 

of images, videos, and similar image forms [1]. By 

working together with augmented reality, it can do 

object recognition and tracking to aid the augmented 

reality accuracy. [2]. 

Regarding object detection in augmented reality, 

several works combine google glass with a PC server 
in [3], and other works use smartphones [4]. As for 

smartphone, there are various types of smartphones 

with different computational resources (CPU, RAM, 

and storage). However, those smartphones are mostly 

not equipped with a graphics processing unit (GPU) 

inside them, which will perform poorly in object 

detection [5],[6]. Therefore, those smartphones need to 

be supported by other devices that can leverage their 

computational ability in performing object detection 

tasks.   

In recent years Nvidia has developed a 

microcomputer that affordable and able to operate 

object detection effectively with its dedicated GPU. It 

is proven in a paper by Luis et al. [7] who conducted a 

study on vehicle and pedestrian detection in rural areas 

using the Nvidia Jetson Nano microcomputer. In [7], 

the results showed that Nvidia Jetson Nano detection 

computation speed is around 1 – 10 seconds when 

processing several combined datasets consisting of 

837 pedestrians and 681 vehicles in rural areas.  In 

addition, Martina et al. [8] also conducted a study on 

deep learning applications in space with Nvidia Jetson 
Nano. The experiment in [8] showed that even though 

Nvidia Jetson Nano speed performance still loses to 

the cutting edge Nvidia GPU, further research on 
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testing Nvidia Jetson Nano capabilities for this usage 

is worth considering.   

Considering the mobility of an Android device and 

the computational resource of Nvidia Jetson Nano, this 

paper discusses the computational performance of 

object detection conducted by an Android device 

versus an Android device supported by Nvidia Jetson 
Nano. Furthermore, the frame per second (FPS) value, 

the reflection of communication and computation 

delays between those systems, is compared and 

analyzed to decide whether offloading the computation 

process from Android to Nvidia Jetson Nano is 

efficient considering the delay between transmission.   

II. RESEARCH  METHODS  

The system model depicted in Fig. 1, consists of 

two devices (an Android device and an Nvidia Jetson 

Nano) and a live video taken by the Android device 
camera.  

 

 

 

 

 
 

 

 

 

(a) 
 

(b) 

Fig.1. System diagram implemented in this work. (a) An object detection scheme is done on a mobile phone. (b) An object detection scheme 

using computational offloading into an NVIDIA jetson nano board. 

Fig.1. (a) shows the all-in-one object detection 

computation conducted by an Android device, and 

Fig.1. (b) shows the computational offloading scheme 

from an Android device to an Nvidia Jetson Nano. 

A. Communication Design Between Android Device 

and Nvidia Jetson Nano 

We use two protocols for sending a live video from 

the Android device to the Nvidia Jetson nano. Both 

protocols send the video data via a wireless local area 
network. The first one is Real-Time Streaming 

Protocol (RTSP). RTSP is a protocol that controls data 

transmission in real-time over a computer network [9]. 

RTSP is used to stream digital media such as audio 

and video in real-time. RTSP also can be used by 

streaming receivers to control servers. In other words, 

RTSP can act as a remote-control network for 

multimedia servers [9]. And the second protocol is 

Real-Time Messaging Protocol (RTMP).  Adobe use 

RTMP to stream audio, video, and data over the 

internet [10]. RTMP is a stateful protocol, meaning 
that the protocol gives the server the ability to observe 

the behavior of the stream receiver, such as when 

playing or pausing the received video [11]. 

 

Fig. 2. Android device and nvidia jetson nano communication 

diagram. 

The android device and Nvidia Jetson Nano 
communicate over an indoor wireless local area 

network connected to the device, Nvidia Jetson Nano, 

and a router. To exchange data, Nvidia Jetson Nano 

acts as a server and provides object detection services 

to devices.  

B. Software and Hardware Requirements 

To design the system some software and hardware 

requirements need to be prepared. In this system, two 

android devices are used for comparison. The 

hardware requirements are: 
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1. Nvidia Jetson Nano, used as a server to help object 

detection computation that has Quad-core ARM 

A57 1.43 GHz Central Processing Unit (CPU), 

128-core Maxwell GPU, and 4 GB 64-bit 

LPDDR4 25.6 GB/s RAM. 

2. Huawei Y7 Pro, a Huawei smartphone that runs on 

Android OS. This smartphone has an Octa-core 
1.8 GHz Cortex-A53 CPU, Adreno 506 GPU, and 

3 GB of RAM 

3. Huawei Nova 5T, is a Huawei smartphone that 

runs on Android OS with Octa-core 2.6 GHz 

Cortex-A76 CPU, Mali-G76 MP10 GPU, and 8 

GB RAM. 

Huawei Y7 Pro with lower hardware capability is 

compared with Huawei Nova 5T, which has more 

hardware capability. Nvidia Jetson Nano helps both 

android devices to do object detection. The result 

when both devices work with Nvidia Jetson Nano and 

process object detection independently are compared. 

Nvidia Jetson Nano is one of the microcomputers 

produced by NVIDIA to run Artificial Intelligence 

applications that are affordable by the broader 

community at affordable prices.  

 

Fig. 3. Nvidia jetson nano [7]. 

The Jetson Nano is equipped with JetPack 

Software Development Kit (SDK) to aid performance 

[7]. JetPack SDK has several components in it, 

namely: 

1. TensorRT, an SDK to aid deep learning 

performance, including Object Detection by 

maximizing GPU performance [12]. 

2. Compute Unified Device Architecture (CUDA) 

toolkit provides an environment for c/c++ 

developers to build applications with accelerated 

GPU [7]. 

3. CUDA Deep Neural Network (cuDNN), a library 
to accelerate GPU for deep neural networks [7]. 

Next is the software requirements. The software 

requirements are: 

1. Android Studio, used to develop the android 

application. Applications made with Android 

Studio are native applications from Android [13]. 

It means that the initial developers of the Android 

operating system have designed Android Studio as 

software to create applications on it. 

2. Python 3.6 is a programming language used in 
programs running on Nvidia Jetson Nano. Python 

programming language can do a variety of jobs. 

Some of which are numerical computing, web 

development, databases, network programming, 

and Image Processing [14]. 

3. OpenCV, one of the libraries in python. OpenCV 

is a library of programming functions that are 

widely used for image processing [15].  

4. FFmpeg, an open-source multimedia framework 

for the transmission of multimedia such as audio 

and video. FFmpeg helps to encode and decoding 
video and audio data [16]. FFmpeg implemented 

in Nvidia Jetson Nano. 

5. YoloV3-tiny is an object detection model that used 

to be the detector in android applications and 

Nvidia Jetson nano. Yolov3-tiny is one of the 

types of YoloV3 detection models. YoloV3 is the 

third generation of the Yolo detection model that 

provides a pre-trained model so we can use object 

detection easily and effectively [17]. When tested 

with Pascal Titan X GPU YoloV3 got 57.9% mean 

average precision (mAP) accuracy and 20 FPS of 

detection speed, while YoloV3-tiny got 33% mAP 
accuracy and 220 FPS of detection speed [18]. 

Therefore, we chose YoloV3-tiny because its 

accuracy is acceptable while having fast detection 

speed. 

C. Measured Parameters 

The test is carried out in both scenarios. The test is 
repeated 30 times and every test has a duration of 2 

minutes. The test is carried out in a laboratory room 

with a size of 5x3 m. 

To measure the success of both scenarios some 

parameters is retrieved on every repetition. The 

parameters to measure the object detection 

computation performance are detected video output 

frame per second (FPS) and detection computation 

speed per frame.  

Detection video input FPS for both scenarios is set 

to be 15 FPS. When the output FPS is closer to input 
FPS it means the detection speed is close to real-time 

[19].  

The parameters to measure Nvidia Jetson Nano 

and android device resource usage are CPU usage and 

RAM usage. And to measure the quality of 

transmission, we use throughput and delay between 

Nvidia Jetson Nano and android devices as 

parameters. 
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(b) 

Fig. 4. Object detection computation performance comparison. (a) FPS comparison. (b) computation speed comparison. 

III. RESULTS 

A. Object Detection Computation Performance
Figure 4. (a) and Fig.4. (b) show the average 

values of all 30 tests. It shows the amount of FPS and 
computation speed comparison between android 
devices when offloading computation on Nvidia 
Jetson Nano with both protocols and when doing it 
independently.   

From Fig. 4. (a), we can see that both devices have 
nearly similar FPS performance values when 
offloading computation on Nvidia Jetson Nano with 
both protocols. Huawei Nova 5T gets an average FPS 
value of 10.469 FPS with RTSP and 10.469 FPS with 
RTMP. Furthermore, Huawei Y7 Pro gets an average 
FPS value of 10.469 FPS with RTSP and 10.468 FPS 
with RTMP. The value is nearly the same as it 
indicates that differences in protocols and devices are 
not impacting the performance of Nvidia Jetson Nano 
on offloading the object detection computation. 
However, when both devices are doing object 
detection computation independently, the performance 
becomes poor. Huawei Nova 5T has better hardware 
performance gets an average FPS value of 6.18 FPS. 
Moreover Huawei Y7 Pro get an average FPS value of 
1.82 FPS.  

The average value of computation speed is nearly 
similar on both devices and protocols. Huawei Nova 
5T gets an average computation speed value of 95.51 
ms with RTSP and 95.51 ms with RTMP. 
Furthermore, Huawei Y7 Pro gets an average 
computation speed value of 95.52 ms with RTSP and 
95.52 ms with RTMP. It means that the computing 
speed of the Nvidia Jetson Nano is not affected by 
device and protocol differences. When doing 
computation independently, FPS and computation 
performance also becomes poor. Huawei Nova 5T has 
better hardware performance gets an average 
computation speed value of 162.78 ms. And Huawei 
Y7 Pro gets an average computation speed value of 
552.29 ms. 

As shown in Fig. 4 both devices’ performances are 

increased when offloading computation on Nvidia 

Jetson Nano. It means the computational offloading 

scheme from an Android device to an Nvidia Jetson 

Nano successfully improve both devices performance.

 

 
(a) 

 
(b) 

Fig. 5. Android devices resource usage (a) CPU usage comparison. (b) RAM usage comparison.
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B. Android Devices Resource Usage 

Figure 5 shows the average values of all 30 tests. 

Fig.5 (a) shows the comparison of CPU usage, and 

Fig.5 (b) shows the comparison of RAM usage when 

offloading computation on Nvidia Jetson Nano with 

both protocols and when doing it independently.   

Jetson Nano. When computing independently, 

Huawei Nova 5T gets an average value of 78.09 

percent. And Huawei Y7 Pro gets an average CPU 

usage value of 25.81 percent with RTSP and 25.82 

percent with RTMP when offloading computation on 

Nvidia Jetson Nano. When computing independently, 

Huawei Y7 Pro gets an average value of 78.88 
percent. As we can see, the value of both android 

devices' CPU usage is nearly similar, and CPU usage 

when both android devices are computing 

independently is vastly higher. It means the 

computational offloading scheme from an Android 

device to an Nvidia Jetson Nano successfully reduces 

CPU usage of both android devices, and the 

differences in android devices and protocols are not 

impacting android devices CPU usage when 

offloading computation on Nvidia Jetson Nano. 

Figure 5 (b) shows that Huawei Nova 5T gets an 
average RAM usage value of 108.35 MB with RTSP 

and 102.07 MB with RTMP when offloading 

computation on Nvidia Jetson Nano. When 

computing independently, Huawei Nova 5T gets an 

average value of 195.38 MB. Moreover, Huawei Y7 

Pro gets an average RAM usage value of 115.76 MB 

with RTSP and 111.13 MB with RTMP when 

offloading computation on Nvidia Jetson Nano. When 

computing independently, Huawei Y7 Pro gets an 

average value of 149.89 MB. Same as before, both 

android devices have a nearly similar RAM usage 

value, and RAM usage when both android devices are 
computing independently is vastly higher. It means 

the computational offloading scheme from an 

Android device to an Nvidia Jetson Nano successfully 

reduces RAM usage of both android devices, and the 

differences in android devices and protocols are not 

impacting android devices RAM usage when 

offloading computation on Nvidia Jetson Nano. 

C. Nvidia Jetson Nano Resource Usage 

The data in this section are retrieved when the 
android device works with the help of Nvidia Jetson 
Nano. Therefore, the retrieved data are Nvidia Jetson 
Nano CPU usage and Nvidia Jetson Nano RAM usage.  

CPU and RAM usage of Nvidia Jetson Nano is 
retrieved using operating system default task manager. 
The average value of all 30 tests is shown in this 
graph. 

When using RTMP, the Nvidia Jetson Nano CPU 
usage is greater than when using RTSP to 
communicate with Huawei Nova 5T or Huawei Y7 
Pro. CPU usage when communicating using the RTSP 
protocol with the Huawei Nova 5T has an average of 

26.25 percent, and when communicating with the 
Huawei Y7 Pro, the average value is 26.24 percent. 
Then, CPU usage when communicating using the 
RTMP protocol with the Huawei Nova 5T has an 
average of 26.74 percent, and when communicating 
with the Huawei Y7 Pro, the average value is 26.77 
percent. 

 

Fig. 6. CPU usage of Nvidia jetson nano when working with android 

device. 

When the Nvidia Jetson Nano communicates with 
RTMP with the Huawei Nova 5T, its CPU usage 
values have a similar overall average as when 
communicating with the Huawei Y7 Pro using the 
same protocol. Furthermore, when using RTSP, the 
Nvidia Jetson Nano CPU value also has a similar 
overall average on both devices. It means that the 
difference in devices does not affect the CPU 
computing load of the Nvidia Jetson Nano, but the use 
of the type of protocol does. 

Based on Fig.6, the RAM used by the Nvidia 
Jetson Nano when using RTSP is greater than the 
RTMP on both devices. When communicating using 
the RTSP protocol with the Huawei Nova 5T, the 
RAM usage is an average of 62.99 percent. When 
communicating with the Huawei Y7 Pro, the average 
value is 63.01 percent. Then, RAM usage when 
communicating using the RTMP protocol with the 
Huawei Nova 5T has an average of 62.49 percent. 
When communicating with the Huawei Y7 Pro, the 
average value is 62.51 percent. Furthermore, just like 
CPU usage, RAM usage has an average similarity 
when both devices use the same protocol. It means that 
the difference in devices does not affect the RAM load 
of the Nvidia Jetson Nano, but the use of the type of 
protocol does. 

D. Communication Performance 

Delay and throughput during communication are 

indicators of the successful delivery of data. Input 

data sent from the device to the Nvidia Jetson Nano is 

called Upload. Moreover, the output sent from the 

Nvidia Jetson Nano to the device is called Download.  

Delay and throughput are retrieved using Wireshark 
when Nvidia Jetson Nano and android devices 

communicate with each other. The average delay 

value of all 30 tests is shown in this graph. 
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Fig. 7. Delay comparison when devices are working with Nvidia 

Jetson Nano. 

Figure 7 shows upload and download delays. 

When uploading, the delay from the Huawei Nova 5T 

RTSP has an average of 18.22 ms, and when using 

RTMP, the average delay is 16.48 ms. For Huawei Y7 

Pro, the average delay when using RTSP is 12.22 ms, 
and when using RTMP, the average is 12.56 ms. The 

average value of the upload delay in Fig. 8 differs on 

the order of 1 ms. The possibility of this difference 

occurs, is due to the instability of the wireless 

connection. 

When downloading, the delay from RTMP far 

exceeds RTSP on either Huawei Nova 5T or Huawei 

Y7 Pro, as shown in Fig.7. For example, the average 

delay of Huawei Nova 5T when using RTSP is 35.95 

ms and when using RTMP is 180.05 ms. Furthermore, 

for Huawei Y7 Pro, the average when using RTSP is 

36.08 ms, and when using RTMP, the average value 

is 167.92 ms. 

It means that object detection displayed on the 

device through RTMP has a higher delay than RTSP 

because upload and download delays contribute to 

delays in device object detection display. 

 

Fig. 8. Throughput comparison when devices are working with 
Nvidia jetson nano. 

In Fig. 8, Huawei Nova 5T has an average upload 

throughput of 969 Kbps when using RTSP and 735 

Kbps when using RTMP. While the Huawei Y7 Pro 

has an average of 971 Kbps when using RTSP and 

735 Kbps when using RTMP. In both android 

devices, RTSP upload throughput is higher than 

RTMP. Same as when uploading, the throughput 

during the download process on the Huawei Nova 5T 

and Huawei Y7 Pro using RTSP are much higher than 

RTMP. When Huawei Nova 5T uses RTSP, the 

average throughput is 337 Kbps, and when using 
RTMP, the average is 65 Kbps. Meanwhile, when 

Huawei Y7 Pro uses RTSP, the average value is 338 

Kbps, and when using RTMP, the average value is 64 

Kbps. 

It means that the object detection results when 

using RTMP are experiencing greater lag than RTSP 

on both devices. Because large throughput indicates 

smooth communication between the device and the 

Nvidia Jetson Nano. 

IV. DISCUSSION 

As expected, the Nvidia Jetson Nano successfully 
helps the android device to do object detection if the 

transmission delay and throughput are not concerned. 

However, bad delay and throughput of the 

transmission causes some lag and delay when 

transmitted detections are displayed in the android 

device screen. RTSP got a better result. It is tolerable, 

as we can see in Fig. 7 and 8. However, RTMP not 

perform so well that it causes 3-6 second delay and lag 

when displayed on the device screen. 

V. CONCLUSION 

Decoupling computation of object detection 

between an Android device and an Nvidia Jetson 

Nano using the system provided in this paper 

successfully improves the detection speed 

performance. The results show that the Huawei Y7 

Pro android device, which has an average FPS 

performance of 1.82 and an average computing speed 

of 552 ms, gets better when working with Nvidia 

Jetson Nano. The average FPS becomes 10, and the 
average computing speed average becomes  95 ms. 

For further work, other video transfer protocol such as 

WebRTC, FTL, and SRT needs to be tested. 

Hopefully, it can improve the transmission delay and 

throughput. For further improvement in aiding 

detection of the android device, the Nvidia Jetson 

Nano that acts as a server needs to be upgraded. The 

suggested upgrade are Jetson TX2Series, Jetson 

Xavier NX, dan Jetson AGX XavierSeries.  
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