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Abstract — The main problem in producing high accuracy software defect prediction is if the data set has an 

imbalance class and dichotomous characteristics. The imbalanced class problem can be solved using a data level 

approach, such as resampling methods. While the problem of software defects predicting if the data set has 

dichotomous characteristics can be approached using the classification method. This study aimed to analyze the 

performance of the proposed software defect prediction method to identify the best combination of resampling 

methods with the appropriate classification method to provide the highest accuracy. The combination of the 

proposed methods first is the resampling process using oversampling, under-sampling, or hybrid methods. The 

second process uses the classification method, namely the Support Vector Machine (SVM) algorithm, and the 

Logistic Regression (LR) algorithm. The proposed, tested model uses five NASA MDP data sets with the same 

number attributes of 37. Based on the t-test, the 𝑷𝑽𝒂𝒍𝒖𝒆 < 𝜶 = 0.0344 < 0.05 and the 𝒕𝒄𝒐𝒖𝒏𝒕 > 𝒕𝒕𝒂𝒃𝒍𝒆 = 3.1524 > 2.7765,  

indicates that the combination of the proposed methods is suitable for classifying an imbalanced class. The 

performance of the classification algorithm has also improved with the use of the resampling process. The average 

increase in AUC values using the resampling in the SVM algorithm is 17.19%, and the LR algorithm is at 7.26% 

compared to without the resampling process. Combining the three resampling methods with the SVM algorithm 

and the LR algorithm shows that the best combining method is the oversampling method with the SVM algorithm 

to software defects prediction in imbalanced class with an average accuracy value of 84.02% and AUC 91.65%.  

Keywords – defect prediction, imbalanced class, logistic regression, resampling, support vector machine. 
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I.  INTRODUCTION 

Software is part of a computer system developed by 

many companies or government agencies. Making 

software aims to make activities run effectively, 

quickly, and accurately, but there are obstacles in 

software development, namely costly costs [1], [2]. 

Therefore, high-quality software development must be 

followed, free from module errors [3]. A module error 

in software is called a software defect. Therefore, we 

need a program to identify modules prone to defects and 

predict errors in these modules [4], [5]. 

According to [6], research on software defects is 

divided into three focuses: estimation, association rules, 

and classification of software defects. In addition to 

focusing on these three topics, software defect research 

also focuses on clustering and data set analysis [7]. One 

of the most popular approaches to software flaw 

prediction is the classification algorithm. The 

classification algorithm will categorize software based 

on its attributes towards defects or not [2]. The popular 

classification method for software defects prediction 

can use two approaches, namely machine learning and 

statistics. The machine learning techniques used are the 

Decision Tree algorithm [8]–[10], Support Vector 

Machine (SVM) [2], [4], Naïve Bayes (NB) [5], 

Artificial Neural Network (NN) [11], [12], K-Nearest 

Network [13], [14], Artificial Neuro-fuzzy [15], [16], 

and Random Forest [17]. In comparison, the statistical 

Copyright © 2021 JURNAL INFOTEL 
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approach to classifying software defects is to use 

regression models such as Logistics Regression (LR) 

[18] and Multiple Linear Regression (MLR) [19]. 

In general, software defects have a class distribution 

with fewer defective classes than non-defective ones 

[15], [20]. Software defects are a minority class, so 

there will be many defects that are not found. There is 

currently no standard for what percentage of a class of 

data sets is said to be unbalanced. Researchers agree 

that a data set is unequal if one class has a percentage 

of 2 times that of another class [21].  

Data with an imbalanced class can affect the 

algorithm’s performance because the prediction results 

produce a majority class [22], [23]. Approaches to 

solving problems that occur in data with an imbalanced 

class can be made using two methods, namely data level 

and algorithm level [23]. The data level approach is 

usually used when there is data with sporadic classes. 

The algorithm level approach is used to find patterns to 

fit the data with an imbalanced class. The process at the 

data level is done by the resampling method. The 

resampling method is used to improve the class 

distribution of the data. In general, resampling methods 

can be divided into oversampling, under-sampling, and 

hybrid [24]. Oversampling is the simplest method in 

dealing with minority classes by conducting random 

classes at the time of sampling by duplicating positive 

classes and balancing classes randomly. If the 

oversampling method works by adding data to the 

minority class, then the under-sampling process reduces 

the data in the majority class [22]. The hybrid method 

is a method that uses a combination of oversampling 

and under-sampling techniques. 

Some of the resampling methods proposed include 

Random Oversampling (ROS), Random Under-

Sampling (RUS), Synthetic Minority Oversampling 

Technique (SMOTE) [6], Fractal Synthetic Minority 

Oversampling Technique (FSMOTE) [25], and Multi-

label Synthetic Minority Oversampling Technique 

(MLSMOTE) [26]. The simplest oversampling method 

is the random oversampling method. The random 

oversampling process works by randomly selecting 

minority data and duplicating it until balanced class 

distribution [21]. However, several studies have shown 

that the under-sampling method is less efficient than the 

oversampling method because this method eliminates 

the majority of data, resulting in the loss of important 

information from the data set, especially in small data 

sets [26].   

Referring to the research that has been done, the 

contribution of this research is the proposed software 

defect prediction method to identify the best 

combination of resampling methods with the 

appropriate classification method to provide the highest 

accuracy. The first process of the proposed methods is 

a resampling process using oversampling, under-

sampling, and hybrid approaches. The second process 

is the software defect prediction process using the 

classification method. The SVM algorithm represents 

the machine learning-based algorithm, and the LR 

algorithm represents the statistical approach. The SVM 

method proposed in this study is due to the advantages 

of SVM, which has hyperplane capabilities. The 

concept of hyperplane is the ability to separate data 

from its class, especially for data with large margins. 

SVM also can generate adaptive boundaries, which is 

very important in dealing with the problem of 

imbalanced class [23]. The LR algorithm proposed in 

this study, due to the LR algorithm, is one of the most 

widely used regression algorithms, easy to implement 

and interpret [7]. 

Since 2000, 64.79% of software defect prediction 

studies have an imbalanced class using data sets on the 

National Aeronautics and Space Administration 

(NASA) Metrics Data Program (MDP) repository [7]. 

Therefore, to test this study's proposed software defect 

prediction model using a data set sourced from the 

NASA MDP repository [2], [27]. The software defect 

prediction method with an imbalanced class is the best 

measured using the value of Area Under Curve (AUC) 

and accuracy [28]. 

The remainder of this paper is organized as follows. 

Section 2 covers the research flow of the proposed 

software defect prediction model using a combination 

of resampling methods with SVM and LR classification 

methods. Then, it describes the comparison of the 

measurement results of the proposed software defect 

prediction model in section 3 and section 4. Finally, 

section 5 concludes the article.  

II. RESEARCH  METHODS  

This paper proposed a software defect prediction 

model using a combination of the best resampling 

method approach with the appropriate classification 

method to provide the highest accuracy, as shown in 

Fig. 1.  

Based on Fig. 1, this research process consists of 

three main steps; in the first step, we carry out the 

resampling process using oversampling, under-

sampling, and hybrid methods to balance the data 

before the classification process is carried out. After the 

data is balanced, the second step is followed by the 

classification process using the SVM and LR 

algorithms. Our last step is testing to determine the 

combination of resampling and classification 

algorithms that produce the highest accuracy by 

measuring accuracy and AUC values. 
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Fig. 1. The proposed method for optimization of software defect prediction 

 

A. Collect Dataset 

In this study, the data set used for software defects 

prediction is the NASA MDP repository data set. The 

NASA MDP data sets are a software matrix which is a 

data set that researchers in Software Engineering 

research commonly use, especially for research topics 

of software defects and software failures [2], [27]. The 

NASA MDP data sets consist of thirteen datasets which 

can be downloaded at 

http://promise.site.uottawa.ca/SERepository/datasets-

page.html. Still, in this study, only five NASA MDP 

data sets with the 37 attributes were used to test for the 

proposed software flaw prediction model, as shown in 

Table 1.2 

Table 1. Description of  nasa MDP dataset 

 

Dataset 
Description 

Sum of 

module 

Sum of 

module 

defect 

Precentage 

of defect 

CM1 
Spaceship 
instrument 

327 42 12.84% 

MW1 

Storage 

management 

for basic data 

253 27 10.67% 

PC1 

Zero gravity 

experiments 
are related to 
combustion 

705 61 8.65% 

PC3 

Flight 

software from 
earth satellite 
orbits 

1077 134 12.44% 

PC4 

Flight 

software from 
earth satellite 
orbits 

1287 177 13.75% 

B. Resampling Method 

The resampling method is the first step of the 

proposed software defect prediction method, which 

aims to improve the distribution of data classes. In this 

step, the test data set will be resampled using three 

methods. The first is the oversampling method, which 

works by adding data to the minority class. This method 

is done by duplicating the minority class and balancing 

the classes randomly. Increasing the minority class is 

expected to improve the ability of the classification 

algorithm to be better because it can recognize the 

minority class sample from the majority sample. 

The second method is the under-sampling method, 

which reduces most of the data in the majority class by 

removing noise and excess constraints from the test data 

set. The trick is to calculate the difference between the 

majority and minority classes. During the iteration 

process, the majority class is deleted so that the same 

number is obtained as the minority class. Furthermore, 

it is repeated as much as the difference between the 

majority and minority classes. This step is considered 

safe because removing excess noise data will not add 

any information about the majority class. Likewise, if 

the noise data is in the majority class, it will not 

significantly affect the information set [29]. 

The third method is a hybrid method that combines 

oversampling and under-sampling techniques. This 

method balances the data set by not removing important 

information from the data set or overfitting [30]. 

C. Support Vector Machine (SVM) 

The SVM method separates data from its class by 

constructing a hyperplane. A good hyperplane is not 

http://promise.site.uottawa.ca/SERepository/datasets-page.html
http://promise.site.uottawa.ca/SERepository/datasets-page.html
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only a hyperplane that can be used to separate data but 

has the most significant margin. The simple idea of the 

SVM method is to maximize margins.  

Each training data is represented by (𝑥𝑖 , 𝑦𝑖) where 

𝑖 = 1,2, ⋯ , 𝑛, and 𝑥𝑖 is a feature set for training data to-

𝑖 . The class label is declared as 𝑦𝑖 ∈ {−1, +1} . The 

SVM linear classification hyperplane is denoted in  (1). 

                           𝑤. 𝑥𝑖 + 𝑏 = 0                            (1) 

𝑤  and 𝑏  are model parameters and 𝑤. 𝑥𝑖  is the inner 

product between 𝑤 and 𝑥𝑖 . The 𝑥𝑖  data that enters the 

𝑦𝑖  class is the data that satisfies equation (2).               

         𝑦𝑖 = {
−1 𝑖𝑓 𝑤. 𝑥𝑖 + 𝑏 ≤ −1
+1 𝑖𝑓 𝑤. 𝑥𝑖 + 𝑏 ≥ +1

                   (2) 

𝑥𝑖 is the training data set, 𝑤 is the support vector weight 
value that is perpendicular to the hyperplane, 𝑏 is bias 
value, 𝑦𝑖  is label class from 𝑥𝑖, and 1 = 1,2, ⋯ , 𝑛. To 
calculate the value of 𝑏 is used  (3). 

     𝑏 = −
1

2
(𝑤. 𝑥+ + 𝑤. 𝑤−)                      (3) 

𝑤. 𝑥+  is the weight value for the positive class, and 
𝑤. 𝑥−  is the weight value for the negative class. The 
value of 𝑤 is obtained from (4). 

                         𝑤 = ∑ 𝛼𝑖𝑦𝑖𝑥𝑖
𝑛
𝑖=1                                 (4) 

𝛼𝑖  is data weight value to-𝑖, 𝑦𝑖  is class data to-𝑖, and 
𝑥𝑖  is data to-𝑖. 

Hyperplane class support +  has to function 𝑤. 𝑥𝑖 +
𝑏 = +1  symbolized to be 𝐻1 . The formula for 
calculating the margin value is declared in (5).   

                   𝑀𝑎𝑟𝑔𝑖𝑛 = |𝑑𝐻1 − 𝑑𝐻2| =
2

‖𝑤‖
               (5) 

𝑑𝐻1  is range hyperplane class support +1 , 𝑑𝐻2  is 
range hyperplane class support −1 , and ‖𝑤‖  is the 
weight vector 𝑤 . The optimal margin calculated by 
maximizing distance between hyperplane and nearest 
data by minimizing the equation inverse (5) or 

minimizing 
1

2
‖𝑤‖2. 

D. Logistic Regression (LR) 

This LR model is used to see the probability of an 
event and compare the risk of an event occurring by 
considering the factors that influence it [31]. LR is part 
of the regression analysis used when the dependent 
variable (response) is dichotomous. The dichotomous 
variable in this study consists of two values that 
represent software defects or not software defects [32]. 
This variable can also be illustrated as binary data, and 
the value is represented by 0 (no software defect) and 1 
(software defect). The general form of LR can be seen 
in (6). 

𝑌 = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + ⋯ + 𝛽𝑝𝑥𝑝𝑖        (6) 

𝑌  is non-biner metric, 𝛽0 is constant, and 𝛽𝑗  is 

coefficient of parameter with 𝑗 = 1,2, ⋯ , 𝑗 . The 
coefficients for the independent variables are estimated 
using the logit value as the dependent measure. Each 

predicted value can be converted into a probability 
between 0 and 1, as shown in (7). 

𝐿𝑜𝑔𝑖𝑡𝑖 = 𝑙𝑛 (
𝜋(𝑥𝑖)

𝑖−𝜋(𝑥𝑖)
)           (7) 

E. Performance Measures 

The next step is to measure the performance of the 
proposed method through the validation and evaluation 
stages. Validation and evaluation of experimental 
results is a measuring tool to determine how well the 
proposed method is compared to the methods studied 
previously. In addition, the results of validation and 
evaluation can be used to determine whether there is a 
significant difference between the proposed method 
and another method. The performance of the proposed 
method is analyzed and evaluated through various 
measures generated from the confusion matrix for a 
binary class (shown in Table 2.). 

Table 2. Confusion matrix for a binary class 

Class Predicted as Positive Predicted as Negative 

Positive True Positive (TP) False Negative (FN) 

Negative False Positive (FP) True Negative (TN) 

 
Diagnostic testing of the classification performance 

in this study used the Area Under Curve (AUC). AUC 
is a curve that describes probability with sensitivity and 
specificity variables with a limit value between 0 to 1. 
AUC is presented in (8) [30]. 

𝐴𝑈𝐶 =
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦+𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
                        (8) 

The calculation of the sensitivity value uses (9), while 
the measure of the specificity value uses (10). 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃𝑅𝑎𝑡𝑒 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
            (9) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁𝑅𝑎𝑡𝑒 =
𝑇𝑁

𝐹𝑃+𝑇𝑁
          (10) 

       Accuracy is defined as the level of closeness 
between the predicted value and the actual value. The 
accuracy value is calculated by taking the correct 
predictive percentage of the overall data. The 
calculation of the accuracy value uses (11) [2]. 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
          (11) 

Accuracy classification of diagnostic tests using AUC 

can be described in Table 3. [33] 

Table 3. Accuracy classification of diagnostic tests using AUC 

AUC value Classification 

0.90 - 1.00 Excellent classification 

0.80 - 0.90 Good classification 

0.70 - 0.80 Fair classification 

0.60 - 0.70 Poor classification 
< 0.60 Failure 

  The performance of the proposed model can be 
measured using the t-test. The t-test is widely used to 
determine whether there is an influence between the 
dependent variable and the independent variable [33]. 
The t-test was conducted to determine whether the 
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combination of resampling methods with different 
classification methods in an imbalanced class gave 
significant results.  The decision t-test can be with two 
events: comparing 𝑃𝑉𝑎𝑙𝑢𝑒  with 𝛼 or 𝑡𝑉𝑎𝑙𝑢𝑒  with 𝑡𝑡𝑎𝑏𝑙𝑒 . 
The hypothesis in the t-test of two independent samples 
is the null hypothesis ( 𝐻0 ) and the alternative 
hypothesis ( 𝐻1 ). The purpose of the t-test is to 
determine which of the two assumptions below are true: 

• 𝐻0 : experimental value gave no significant results 
between the combination method of resampling 
and the SVM algorithm compared to the 
combination method of resampling and LR 
algorithms in an imbalanced class. 

• 𝐻1 : experimental value gave significant results 
between the combination method of resampling 
and the SVM algorithm compared to the 
combination method of resampling and LR 
algorithms in an imbalanced class. 

The decision is reached based on experimental evidence 
which rejects or accepts 𝐻0. Hypothesis testing in this 
paper uses a significant level value of 𝛼 = 0.05. The 
hypothesis used is as follows: 

• Based on the significance value 𝑃𝑉𝑎𝑙𝑢𝑒 , if the value 
is 𝑃𝑉𝑎𝑙𝑢𝑒< 𝛼, then reject 𝐻0, or if 𝑃𝑉𝑎𝑙𝑢𝑒> 𝛼, then 
accept 𝐻0. 

• Based on the value of 𝑡𝑐𝑜𝑢𝑛𝑡 and 𝑡𝑡𝑎𝑏𝑙𝑒, if the value 
of 𝑡𝑐𝑜𝑢𝑛𝑡 > 𝑡𝑡𝑎𝑏𝑙𝑒, then reject 𝐻0, or if the value of 
𝑡𝑐𝑜𝑢𝑛𝑡 < 𝑡𝑡𝑎𝑏𝑙𝑒𝑠, then accept 𝐻0. 

III. RESULTS 

This paper discusses the prediction of software 
defects when an imbalanced class problem is found in 
the data set. The test in this paper uses five NASA MPD 
data sets that have the same number attributes of 37 
(CM1, MW1, PC1, PC3, PC4). The method tested is the 
model's performance combining resampling methods: 
oversampling, undersampling, and Hybrid, followed by 
the SVM and LR classification methods. 

In the first step, a t-test will be conducted to 

determine whether the data processing result using the 

combination resampling method and the SVM 

algorithm compared to the combination resampling 

method and the LR algorithm in an imbalanced class 

gives significant results. The second step tests the 

validation of the proposed model for software defects 

prediction based on the value of accuracy and AUC.  

Finally, the third step compares the performance of 

each proposed model to get the best combination of 

software defect prediction models. This section will 

also compare the performance of the best variety of 

resampling and classification methods with the models 

proposed in other studies. 

A. T-test Results 

The evaluation process of the proposed model is 

carried out using a t-test, which aims to determine 

whether data processing using a combination of 

resampling methods with SVM and LR algorithms 

gives significant results. The results of the t-test 

calculations are presented in Table 4. 

Table 4. Results calculations t-test 

Paired t-test 

df 4 

𝑡𝑐𝑜𝑢𝑛𝑡 3.1254 

𝑡𝑡𝑎𝑏𝑙𝑒 2.7765 

𝑃𝑉𝑎𝑙𝑢𝑒 0.0344 

𝛼 0.05 

 

Based on Table 4, the t-test results show that the 

𝑃𝑉𝑎𝑙𝑢𝑒  < 𝛼  = 0.0344 < 0.05 and the 𝑡𝑐𝑜𝑢𝑛𝑡 > 𝑡𝑡𝑎𝑏𝑙𝑒  = 

3.1254 > 2.7765. Based on a valid hypothesis, the 

conclusion that 𝐻0  is rejected, which means the 

experimental value gave significant results between the 

combination method of resampling and the SVM 

algorithm compared to the combination method of 

resampling and LR algorithms in an imbalanced class. 

B. Analysis Combination Method of Resampling and 

SVM Algorithm 

The results of the accuracy calculation using a 

combination of oversampling, under-sampling, or 

Hybrid methods with the SVM algorithm are shown in 

Table 5. 

Table 5. Comparison of accuracy value for combination method 

resampling and SVM algorithm 

Data Set 

Oversampl

ing 

Under-

sampling 
Hybrid 

CM1 0.8403 0.5294 0.7246 

MW1 0.8261 0.5000 0.7925 

PC1 0.8535 0.8000 0.8497 

PC3 0.8140 0.7091 0.7965 

PC4 0.8669 0.8841 0.8541 

Average 0.8402 0.6845 0.8035 

 
Table 5 shows that of the five data sets, four data 

sets have high accuracy when using a combination of 
oversampling and SVM methods. The average 
accuracy results are shown in Table 5.; the 
combination method of oversampling and SVM 
algorithm has the highest accuracy of 84.02% because 
the average accuracy > 80% proves that the 
combination of the proposed methods is high accuracy 
for software defects prediction in imbalanced class. 

The results of the AUC calculation using a 

combination of oversampling, under-sampling, or 

Hybrid methods with the SVM algorithm are shown in 

Table 6. 

Table 6. Comparison of AUC value for combination method 

resampling and SVM algorithm 

Data Set Oversampling 
Under-

sampling 
Hybrid 

CM1 0.9226 0.6250 0.8488 
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Data Set Oversampling 
Under-

sampling 
Hybrid 

MW1 0.9001 0.5000 0.8960 

PC1 0.9322 0.7692 0.9333 

PC3 0.9041 0.7831 0.8812 

PC4 0.9233 0.9167 0.9398 

Average 0.9165 0.7188 0.8998 

Table 6 shows that the AUC value of the 

oversampling and SVM combination of the five data 

sets, three data sets have the highest AUC value. The 

average result of the highest AUC value using the 

oversampling and SVM methods is 91.65%. Based on 

the average AUC value of the combination of 

oversampling and SVM methods > 90%, it is proven 

that the proposed combination of the model has 

excellent performance for software defects prediction 

in an imbalanced class. 

C. Analysis Combination Method of Resampling and 

LR Algorithm 

The results of the accuracy calculation using a 

combination of oversampling, under-sampling, or 

Hybrid methods with the LR algorithm are shown in 

Table 7. 

Table 7. Comparison of accuracy value for combination method 

resampling and LR algorithm 

Data Set Oversampling 
Under-

sampling 
Hybrid 

CM1 0.8571 0.4118 0.7826 

MW1 0.7717 0.5833 0.6604 

PC1 0.8498 0.6400 0.8431 

PC3 0.7829 0.7091 0.8009 

PC4 0.8254 0.8551 0.8541 

Average 0.8174 0.6399 0.7882 

Table 7 shows that of the five data sets, three data 
sets have high accuracy when using a combination of 
oversampling and LR methods. The average accuracy 
results are shown in Table 7; the combination method 
of oversampling and the LR algorithm have the highest 
accuracy of 81.74%. The average accuracy>80% 
proves that the combination of the proposed methods is 
high accuracy for software defects prediction in 
imbalanced class. 

The results of the AUC calculation using a 

combination of oversampling, under-sampling, or 

Hybrid methods with the LR algorithm are shown in 

Table 8. 

Table 8. Comparison of AUC Value for Combination Method 

Resampling and LR Algorithm 

Data Set Oversampling 
Under-

sampling 
Hybrid 

CM1 0.8886 0.4028 0.7965 

MW1 0.8400 0.6667 0.6624 

PC1 0.9084 0.6346 0.9109 

Data Set Oversampling 
Under-

sampling 
Hybrid 

PC3 0.8637 0.7910 0.8412 

PC4 0.9230 0.9461 0.9364 

Average 0.8847 0.6882 0.8295 

 

Table 8 shows that the AUC value of the 

oversampling and LR combination of the five data sets, 

three data sets have the highest AUC value. The average 

result of the highest AUC value using the oversampling 

and LR methods is 88.47%. Based on the average AUC 

value of the combination of oversampling and SVM 

methods > 80%, it is proven that the proposed 

combination of the model has good performance for 

software defects prediction with an imbalanced class. 

DISCUSSION 

The results of testing the AUC values in Table 7 and 

Table 8 show the proposed best software defect 

prediction in an imbalanced class method using a 

combination of oversampling methods for the 

resampling process. In addition, using the resampling 

method before classification proses using the SVM and 

LR algorithms, on average, increases classification 

performance, as shown in Table 9. 

Table 9. Improved Classification Performance using The 

Resampling Process  

Data Set 

Increase in AUC (%) 

LR SVM 

CM1 11.08 35.43 

MW1 5.18 16.75 

PC1 12.32 16.05 

PC3 4.75 12.33 

PC4 3.50 5.43 

Average 7.36 17.19 

The average increase in AUC values in Table 9 

shows that using the resampling method can improve 

the classification performance for software defect 

prediction. The most significant increase in the AUC 

value in the SVM algorithm is 17.19% compared to the 

LR algorithm at 7.26, which proves the resampling 

process works very well to improve the performance of 

the SVM algorithm to software defects prediction in 

imbalanced class. 

Table 5 and Table 7 show that combining the 

oversampling method with both classification 

algorithms dominates as the best resampling method in 

dealing with imbalanced class. The results of 

comparing the accuracy of the oversampling process 

combined with the SVM and LR algorithms are 

presented in Fig. 2. 
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Fig.2. Comparison of accuracy value chart the combination 

oversampling (OS) with SVM and LR algorithms 

Fig.2 shows the majority of accuracy value for the 
best software defects predicted using a combination of 
oversampling and SVM algorithms. The average 
accuracy of the oversampling combination and SVM 
methods is 2.28% higher than the oversampling and LR 
methods. 

Table 6 and Table 8 show that combining the 
oversampling method with both classification 
algorithms dominates as the best resampling method in 
dealing with imbalanced classes. Fig.3 shows the 
comparison of the AUC value of the combination 
method oversampling with the SVM and LR 
algorithms. Fig.3. shows all of the AUC values for the 
best software defects prediction using a combination of 
oversampling and SVM algorithms. The average AUC 
of the combination of oversampling and SVM methods 
is 3.17% higher than the oversampling and LR 
methods. 

 

Fig. 3. Comparison of AUC value chart the combination 

Oversampling (OS) using SVM and LR algorithms 

      The best-combined performance of the proposed 

method is a combination of oversampling with SVM 

for software defects prediction with an imbalanced 

class. Table 9.  shows a comparison of the performance 

of the best model proposed in this paper with the model 

proposed by [11], [15] to predict software defects. 

Research conducted by [11] proposed a combination 

method of traditional Artificial Neural Network (ANN) 

and a new Artificial Bee Colony (ABC) algorithm. In 

addition, an artificial Neuro-Fuzzy Inference system as 

a basic classifier using SMOTE technique to balance 

the dataset was proposed by [15]. 

 

 

 

Table 10. Comparison of the AUC values of the proposed method 

with other studies 

Data Set 

Proposed 

Method 
[11] [15] 

CM1 0.9226 0.7700 0.7400 

MW1 0.9001 - - 

PC1 0.9322 0.8200 0.7300 

PC3 0.9041 - - 

PC4 0.9233 - - 

Average 0.9165 0.7950 0.7350 

     Table 10 shows the results of the AUC test using the 

same data set, indicating that the proposed method is 

on average 7.52% higher than the proposed method 

[11], [15]. This analysis proves that the combination of 

the oversampling method with SVM has a better 

classification performance than the proposed method 

[11], [15] for software defects prediction in imbalanced 

class. The overall performance of the combined 

oversampling method with SVM provides high 

accuracy and is excellent at software defects prediction 

in an imbalanced class 

CONCLUSION 

       This study proposed a combination resampling 

method with a classification algorithm to software 

defects prediction in an imbalanced class. Testing the 

proposed model uses five data sets from 13 data sets 

from the NASA MDP data set, with the same attributes 

and have dichotomous characteristics. The 

performance evaluation of the proposed method uses a 

t-test, the AUC measure, and the Accuracy value. The 

t-test shows the 𝑃𝑉𝑎𝑙𝑢𝑒  < 𝛼  = 0.0344 < 0.05 and the 

𝑡𝑐𝑜𝑢𝑛𝑡  > 𝑡𝑡𝑎𝑏𝑙𝑒  = 3.1524 > 2.7765, which proves 

experimental value gave significant results between the 

combination method resampling and the SVM 

algorithm compared to the combination method of 

resampling and LR algorithms in an imbalanced class. 

The performance of the classification algorithm has 

also improved with the use of the resampling process, 

the average increase in AUC values in the SVM 

algorithm is 17.19%, and the LR algorithm is at 7.26% 

compared to without the resampling process.  

Combining the oversampling method with the SVM 

algorithm is more accurate for software defects 

prediction with an average accuracy value of 84.02%, 

which is 2.3% higher than the LR classification 

algorithm. The average AUC value for combining the 

oversampling method with the SVM algorithm is > 

90%, which is 91.65%, indicating that the proposed 

model is excellent at software defects prediction for 

imbalanced class compared to the LR classification 

algorithm.  
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