

JURNAL INFOTEL

Informatics - Telecommunication - Electronics

Website Jurnal : http://ejournal.st3telkom.ac.id/index.php/infotel

ISSN : 2085-3688; e-ISSN : 2460-0997

 176

Jurnal Infotel Vol.13 No.4 November 2021

https://doi.org/10.20895/infotel.v13i4.726

Optimization of software defects prediction in imbalanced

class using a combination of resampling methods with

support vector machine and logistic regression

Windyaning Ustyannie1, Emy Setyaningsih 2*, Catur Iswahyudi 3
1,2 Department of Computer Systems Engineering, Institut Sains & Teknologi AKPRIND

3 Department of Informatics, Institut Sains & Technology AKPRIND
1,2,3 Kalisahak Street No. 28, Yogyakarta 55222, Indonesia

*Corresponding email: emysetyaningsih@akprind.ac.id

Received 18 October 2021, Revised 20 November 2021, Accepted 7 December 2021

Abstract — The main problem in producing high accuracy software defect prediction is if the data set has an

imbalance class and dichotomous characteristics. The imbalanced class problem can be solved using a data level

approach, such as resampling methods. While the problem of software defects predicting if the data set has

dichotomous characteristics can be approached using the classification method. This study aimed to analyze the

performance of the proposed software defect prediction method to identify the best combination of resampling

methods with the appropriate classification method to provide the highest accuracy. The combination of the

proposed methods first is the resampling process using oversampling, under-sampling, or hybrid methods. The

second process uses the classification method, namely the Support Vector Machine (SVM) algorithm, and the

Logistic Regression (LR) algorithm. The proposed, tested model uses five NASA MDP data sets with the same

number attributes of 37. Based on the t-test, the 𝑷𝑽𝒂𝒍𝒖𝒆 < 𝜶 = 0.0344 < 0.05 and the 𝒕𝒄𝒐𝒖𝒏𝒕 > 𝒕𝒕𝒂𝒃𝒍𝒆 = 3.1524 > 2.7765,

indicates that the combination of the proposed methods is suitable for classifying an imbalanced class. The

performance of the classification algorithm has also improved with the use of the resampling process. The average

increase in AUC values using the resampling in the SVM algorithm is 17.19%, and the LR algorithm is at 7.26%

compared to without the resampling process. Combining the three resampling methods with the SVM algorithm

and the LR algorithm shows that the best combining method is the oversampling method with the SVM algorithm

to software defects prediction in imbalanced class with an average accuracy value of 84.02% and AUC 91.65%.

Keywords – defect prediction, imbalanced class, logistic regression, resampling, support vector machine.

All rights reserved.

I. INTRODUCTION

Software is part of a computer system developed by

many companies or government agencies. Making

software aims to make activities run effectively,

quickly, and accurately, but there are obstacles in

software development, namely costly costs [1], [2].

Therefore, high-quality software development must be

followed, free from module errors [3]. A module error

in software is called a software defect. Therefore, we

need a program to identify modules prone to defects and

predict errors in these modules [4], [5].

According to [6], research on software defects is

divided into three focuses: estimation, association rules,

and classification of software defects. In addition to

focusing on these three topics, software defect research

also focuses on clustering and data set analysis [7]. One

of the most popular approaches to software flaw

prediction is the classification algorithm. The

classification algorithm will categorize software based

on its attributes towards defects or not [2]. The popular

classification method for software defects prediction

can use two approaches, namely machine learning and

statistics. The machine learning techniques used are the

Decision Tree algorithm [8]–[10], Support Vector

Machine (SVM) [2], [4], Naïve Bayes (NB) [5],

Artificial Neural Network (NN) [11], [12], K-Nearest

Network [13], [14], Artificial Neuro-fuzzy [15], [16],

and Random Forest [17]. In comparison, the statistical

Copyright © 2021 JURNAL INFOTEL

ISSN : 2085-3688; e-ISSN : 2460-0997

Optimization of software defects prediction in imbalanced class using a combination of resampling methods with support vector machine

and logistic regression

 177

Jurnal Infotel Vol.13 No.4 November 2021

https://doi.org/10.20895/infotel.v13i4.726

approach to classifying software defects is to use

regression models such as Logistics Regression (LR)

[18] and Multiple Linear Regression (MLR) [19].

In general, software defects have a class distribution

with fewer defective classes than non-defective ones

[15], [20]. Software defects are a minority class, so

there will be many defects that are not found. There is

currently no standard for what percentage of a class of

data sets is said to be unbalanced. Researchers agree

that a data set is unequal if one class has a percentage

of 2 times that of another class [21].

Data with an imbalanced class can affect the

algorithm’s performance because the prediction results

produce a majority class [22], [23]. Approaches to

solving problems that occur in data with an imbalanced

class can be made using two methods, namely data level

and algorithm level [23]. The data level approach is

usually used when there is data with sporadic classes.

The algorithm level approach is used to find patterns to

fit the data with an imbalanced class. The process at the

data level is done by the resampling method. The

resampling method is used to improve the class

distribution of the data. In general, resampling methods

can be divided into oversampling, under-sampling, and

hybrid [24]. Oversampling is the simplest method in

dealing with minority classes by conducting random

classes at the time of sampling by duplicating positive

classes and balancing classes randomly. If the

oversampling method works by adding data to the

minority class, then the under-sampling process reduces

the data in the majority class [22]. The hybrid method

is a method that uses a combination of oversampling

and under-sampling techniques.

Some of the resampling methods proposed include

Random Oversampling (ROS), Random Under-

Sampling (RUS), Synthetic Minority Oversampling

Technique (SMOTE) [6], Fractal Synthetic Minority

Oversampling Technique (FSMOTE) [25], and Multi-

label Synthetic Minority Oversampling Technique

(MLSMOTE) [26]. The simplest oversampling method

is the random oversampling method. The random

oversampling process works by randomly selecting

minority data and duplicating it until balanced class

distribution [21]. However, several studies have shown

that the under-sampling method is less efficient than the

oversampling method because this method eliminates

the majority of data, resulting in the loss of important

information from the data set, especially in small data

sets [26].

Referring to the research that has been done, the

contribution of this research is the proposed software

defect prediction method to identify the best

combination of resampling methods with the

appropriate classification method to provide the highest

accuracy. The first process of the proposed methods is

a resampling process using oversampling, under-

sampling, and hybrid approaches. The second process

is the software defect prediction process using the

classification method. The SVM algorithm represents

the machine learning-based algorithm, and the LR

algorithm represents the statistical approach. The SVM

method proposed in this study is due to the advantages

of SVM, which has hyperplane capabilities. The

concept of hyperplane is the ability to separate data

from its class, especially for data with large margins.

SVM also can generate adaptive boundaries, which is

very important in dealing with the problem of

imbalanced class [23]. The LR algorithm proposed in

this study, due to the LR algorithm, is one of the most

widely used regression algorithms, easy to implement

and interpret [7].

Since 2000, 64.79% of software defect prediction

studies have an imbalanced class using data sets on the

National Aeronautics and Space Administration

(NASA) Metrics Data Program (MDP) repository [7].

Therefore, to test this study's proposed software defect

prediction model using a data set sourced from the

NASA MDP repository [2], [27]. The software defect

prediction method with an imbalanced class is the best

measured using the value of Area Under Curve (AUC)

and accuracy [28].

The remainder of this paper is organized as follows.

Section 2 covers the research flow of the proposed

software defect prediction model using a combination

of resampling methods with SVM and LR classification

methods. Then, it describes the comparison of the

measurement results of the proposed software defect

prediction model in section 3 and section 4. Finally,

section 5 concludes the article.

II. RESEARCH METHODS

This paper proposed a software defect prediction

model using a combination of the best resampling

method approach with the appropriate classification

method to provide the highest accuracy, as shown in

Fig. 1.

Based on Fig. 1, this research process consists of

three main steps; in the first step, we carry out the

resampling process using oversampling, under-

sampling, and hybrid methods to balance the data

before the classification process is carried out. After the

data is balanced, the second step is followed by the

classification process using the SVM and LR

algorithms. Our last step is testing to determine the

combination of resampling and classification

algorithms that produce the highest accuracy by

measuring accuracy and AUC values.

ISSN : 2085-3688; e-ISSN : 2460-0997

Optimization of software defects prediction in imbalanced class using a combination of resampling methods with support vector machine

and logistic regression

 178

Jurnal Infotel Vol.13 No.4 November 2021

https://doi.org/10.20895/infotel.v13i4.726

Fig. 1. The proposed method for optimization of software defect prediction

A. Collect Dataset

In this study, the data set used for software defects

prediction is the NASA MDP repository data set. The

NASA MDP data sets are a software matrix which is a

data set that researchers in Software Engineering

research commonly use, especially for research topics

of software defects and software failures [2], [27]. The

NASA MDP data sets consist of thirteen datasets which

can be downloaded at

http://promise.site.uottawa.ca/SERepository/datasets-

page.html. Still, in this study, only five NASA MDP

data sets with the 37 attributes were used to test for the

proposed software flaw prediction model, as shown in

Table 1.2

Table 1. Description of nasa MDP dataset

Dataset
Description

Sum of

module

Sum of

module

defect

Precentage

of defect

CM1
Spaceship
instrument

327 42 12.84%

MW1

Storage

management

for basic data

253 27 10.67%

PC1

Zero gravity

experiments
are related to
combustion

705 61 8.65%

PC3

Flight

software from
earth satellite
orbits

1077 134 12.44%

PC4

Flight

software from
earth satellite
orbits

1287 177 13.75%

B. Resampling Method

The resampling method is the first step of the

proposed software defect prediction method, which

aims to improve the distribution of data classes. In this

step, the test data set will be resampled using three

methods. The first is the oversampling method, which

works by adding data to the minority class. This method

is done by duplicating the minority class and balancing

the classes randomly. Increasing the minority class is

expected to improve the ability of the classification

algorithm to be better because it can recognize the

minority class sample from the majority sample.

The second method is the under-sampling method,

which reduces most of the data in the majority class by

removing noise and excess constraints from the test data

set. The trick is to calculate the difference between the

majority and minority classes. During the iteration

process, the majority class is deleted so that the same

number is obtained as the minority class. Furthermore,

it is repeated as much as the difference between the

majority and minority classes. This step is considered

safe because removing excess noise data will not add

any information about the majority class. Likewise, if

the noise data is in the majority class, it will not

significantly affect the information set [29].

The third method is a hybrid method that combines

oversampling and under-sampling techniques. This

method balances the data set by not removing important

information from the data set or overfitting [30].

C. Support Vector Machine (SVM)

The SVM method separates data from its class by

constructing a hyperplane. A good hyperplane is not

http://promise.site.uottawa.ca/SERepository/datasets-page.html
http://promise.site.uottawa.ca/SERepository/datasets-page.html

ISSN : 2085-3688; e-ISSN : 2460-0997

Optimization of software defects prediction in imbalanced class using a combination of resampling methods with support vector machine

and logistic regression

 179

Jurnal Infotel Vol.13 No.4 November 2021

https://doi.org/10.20895/infotel.v13i4.726

only a hyperplane that can be used to separate data but

has the most significant margin. The simple idea of the

SVM method is to maximize margins.

Each training data is represented by (𝑥𝑖 , 𝑦𝑖) where

𝑖 = 1,2, ⋯ , 𝑛, and 𝑥𝑖 is a feature set for training data to-

𝑖 . The class label is declared as 𝑦𝑖 ∈ {−1, +1} . The

SVM linear classification hyperplane is denoted in (1).

 𝑤. 𝑥𝑖 + 𝑏 = 0 (1)

𝑤 and 𝑏 are model parameters and 𝑤. 𝑥𝑖 is the inner

product between 𝑤 and 𝑥𝑖 . The 𝑥𝑖 data that enters the

𝑦𝑖 class is the data that satisfies equation (2).

 𝑦𝑖 = {
−1 𝑖𝑓 𝑤. 𝑥𝑖 + 𝑏 ≤ −1
+1 𝑖𝑓 𝑤. 𝑥𝑖 + 𝑏 ≥ +1

 (2)

𝑥𝑖 is the training data set, 𝑤 is the support vector weight
value that is perpendicular to the hyperplane, 𝑏 is bias
value, 𝑦𝑖 is label class from 𝑥𝑖, and 1 = 1,2, ⋯ , 𝑛. To
calculate the value of 𝑏 is used (3).

 𝑏 = −
1

2
(𝑤. 𝑥+ + 𝑤. 𝑤−) (3)

𝑤. 𝑥+ is the weight value for the positive class, and
𝑤. 𝑥− is the weight value for the negative class. The
value of 𝑤 is obtained from (4).

 𝑤 = ∑ 𝛼𝑖𝑦𝑖𝑥𝑖
𝑛
𝑖=1 (4)

𝛼𝑖 is data weight value to-𝑖, 𝑦𝑖 is class data to-𝑖, and
𝑥𝑖 is data to-𝑖.

Hyperplane class support + has to function 𝑤. 𝑥𝑖 +
𝑏 = +1 symbolized to be 𝐻1 . The formula for
calculating the margin value is declared in (5).

 𝑀𝑎𝑟𝑔𝑖𝑛 = |𝑑𝐻1 − 𝑑𝐻2| =
2

‖𝑤‖
 (5)

𝑑𝐻1 is range hyperplane class support +1 , 𝑑𝐻2 is
range hyperplane class support −1 , and ‖𝑤‖ is the
weight vector 𝑤 . The optimal margin calculated by
maximizing distance between hyperplane and nearest
data by minimizing the equation inverse (5) or

minimizing
1

2
‖𝑤‖2.

D. Logistic Regression (LR)

This LR model is used to see the probability of an
event and compare the risk of an event occurring by
considering the factors that influence it [31]. LR is part
of the regression analysis used when the dependent
variable (response) is dichotomous. The dichotomous
variable in this study consists of two values that
represent software defects or not software defects [32].
This variable can also be illustrated as binary data, and
the value is represented by 0 (no software defect) and 1
(software defect). The general form of LR can be seen
in (6).

𝑌 = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + ⋯ + 𝛽𝑝𝑥𝑝𝑖 (6)

𝑌 is non-biner metric, 𝛽0 is constant, and 𝛽𝑗 is

coefficient of parameter with 𝑗 = 1,2, ⋯ , 𝑗 . The
coefficients for the independent variables are estimated
using the logit value as the dependent measure. Each

predicted value can be converted into a probability
between 0 and 1, as shown in (7).

𝐿𝑜𝑔𝑖𝑡𝑖 = 𝑙𝑛 (
𝜋(𝑥𝑖)

𝑖−𝜋(𝑥𝑖)
) (7)

E. Performance Measures

The next step is to measure the performance of the
proposed method through the validation and evaluation
stages. Validation and evaluation of experimental
results is a measuring tool to determine how well the
proposed method is compared to the methods studied
previously. In addition, the results of validation and
evaluation can be used to determine whether there is a
significant difference between the proposed method
and another method. The performance of the proposed
method is analyzed and evaluated through various
measures generated from the confusion matrix for a
binary class (shown in Table 2.).

Table 2. Confusion matrix for a binary class

Class Predicted as Positive Predicted as Negative

Positive True Positive (TP) False Negative (FN)

Negative False Positive (FP) True Negative (TN)

Diagnostic testing of the classification performance

in this study used the Area Under Curve (AUC). AUC
is a curve that describes probability with sensitivity and
specificity variables with a limit value between 0 to 1.
AUC is presented in (8) [30].

𝐴𝑈𝐶 =
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦+𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
 (8)

The calculation of the sensitivity value uses (9), while
the measure of the specificity value uses (10).

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃𝑅𝑎𝑡𝑒 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (9)

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁𝑅𝑎𝑡𝑒 =
𝑇𝑁

𝐹𝑃+𝑇𝑁
 (10)

 Accuracy is defined as the level of closeness
between the predicted value and the actual value. The
accuracy value is calculated by taking the correct
predictive percentage of the overall data. The
calculation of the accuracy value uses (11) [2].

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (11)

Accuracy classification of diagnostic tests using AUC

can be described in Table 3. [33]

Table 3. Accuracy classification of diagnostic tests using AUC

AUC value Classification

0.90 - 1.00 Excellent classification

0.80 - 0.90 Good classification

0.70 - 0.80 Fair classification

0.60 - 0.70 Poor classification
< 0.60 Failure

 The performance of the proposed model can be
measured using the t-test. The t-test is widely used to
determine whether there is an influence between the
dependent variable and the independent variable [33].
The t-test was conducted to determine whether the

ISSN : 2085-3688; e-ISSN : 2460-0997

Optimization of software defects prediction in imbalanced class using a combination of resampling methods with support vector machine

and logistic regression

 180

Jurnal Infotel Vol.13 No.4 November 2021

https://doi.org/10.20895/infotel.v13i4.726

combination of resampling methods with different
classification methods in an imbalanced class gave
significant results. The decision t-test can be with two
events: comparing 𝑃𝑉𝑎𝑙𝑢𝑒 with 𝛼 or 𝑡𝑉𝑎𝑙𝑢𝑒 with 𝑡𝑡𝑎𝑏𝑙𝑒 .
The hypothesis in the t-test of two independent samples
is the null hypothesis (𝐻0) and the alternative
hypothesis (𝐻1). The purpose of the t-test is to
determine which of the two assumptions below are true:

• 𝐻0 : experimental value gave no significant results
between the combination method of resampling
and the SVM algorithm compared to the
combination method of resampling and LR
algorithms in an imbalanced class.

• 𝐻1 : experimental value gave significant results
between the combination method of resampling
and the SVM algorithm compared to the
combination method of resampling and LR
algorithms in an imbalanced class.

The decision is reached based on experimental evidence
which rejects or accepts 𝐻0. Hypothesis testing in this
paper uses a significant level value of 𝛼 = 0.05. The
hypothesis used is as follows:

• Based on the significance value 𝑃𝑉𝑎𝑙𝑢𝑒 , if the value
is 𝑃𝑉𝑎𝑙𝑢𝑒< 𝛼, then reject 𝐻0, or if 𝑃𝑉𝑎𝑙𝑢𝑒> 𝛼, then
accept 𝐻0.

• Based on the value of 𝑡𝑐𝑜𝑢𝑛𝑡 and 𝑡𝑡𝑎𝑏𝑙𝑒, if the value
of 𝑡𝑐𝑜𝑢𝑛𝑡 > 𝑡𝑡𝑎𝑏𝑙𝑒, then reject 𝐻0, or if the value of
𝑡𝑐𝑜𝑢𝑛𝑡 < 𝑡𝑡𝑎𝑏𝑙𝑒𝑠, then accept 𝐻0.

III. RESULTS

This paper discusses the prediction of software
defects when an imbalanced class problem is found in
the data set. The test in this paper uses five NASA MPD
data sets that have the same number attributes of 37
(CM1, MW1, PC1, PC3, PC4). The method tested is the
model's performance combining resampling methods:
oversampling, undersampling, and Hybrid, followed by
the SVM and LR classification methods.

In the first step, a t-test will be conducted to

determine whether the data processing result using the

combination resampling method and the SVM

algorithm compared to the combination resampling

method and the LR algorithm in an imbalanced class

gives significant results. The second step tests the

validation of the proposed model for software defects

prediction based on the value of accuracy and AUC.

Finally, the third step compares the performance of

each proposed model to get the best combination of

software defect prediction models. This section will

also compare the performance of the best variety of

resampling and classification methods with the models

proposed in other studies.

A. T-test Results

The evaluation process of the proposed model is

carried out using a t-test, which aims to determine

whether data processing using a combination of

resampling methods with SVM and LR algorithms

gives significant results. The results of the t-test

calculations are presented in Table 4.

Table 4. Results calculations t-test

Paired t-test

df 4

𝑡𝑐𝑜𝑢𝑛𝑡 3.1254

𝑡𝑡𝑎𝑏𝑙𝑒 2.7765

𝑃𝑉𝑎𝑙𝑢𝑒 0.0344

𝛼 0.05

Based on Table 4, the t-test results show that the

𝑃𝑉𝑎𝑙𝑢𝑒 < 𝛼 = 0.0344 < 0.05 and the 𝑡𝑐𝑜𝑢𝑛𝑡 > 𝑡𝑡𝑎𝑏𝑙𝑒 =

3.1254 > 2.7765. Based on a valid hypothesis, the

conclusion that 𝐻0 is rejected, which means the

experimental value gave significant results between the

combination method of resampling and the SVM

algorithm compared to the combination method of

resampling and LR algorithms in an imbalanced class.

B. Analysis Combination Method of Resampling and

SVM Algorithm

The results of the accuracy calculation using a

combination of oversampling, under-sampling, or

Hybrid methods with the SVM algorithm are shown in

Table 5.

Table 5. Comparison of accuracy value for combination method

resampling and SVM algorithm

Data Set

Oversampl

ing

Under-

sampling
Hybrid

CM1 0.8403 0.5294 0.7246

MW1 0.8261 0.5000 0.7925

PC1 0.8535 0.8000 0.8497

PC3 0.8140 0.7091 0.7965

PC4 0.8669 0.8841 0.8541

Average 0.8402 0.6845 0.8035

Table 5 shows that of the five data sets, four data

sets have high accuracy when using a combination of
oversampling and SVM methods. The average
accuracy results are shown in Table 5.; the
combination method of oversampling and SVM
algorithm has the highest accuracy of 84.02% because
the average accuracy > 80% proves that the
combination of the proposed methods is high accuracy
for software defects prediction in imbalanced class.

The results of the AUC calculation using a

combination of oversampling, under-sampling, or

Hybrid methods with the SVM algorithm are shown in

Table 6.

Table 6. Comparison of AUC value for combination method

resampling and SVM algorithm

Data Set Oversampling
Under-

sampling
Hybrid

CM1 0.9226 0.6250 0.8488

ISSN : 2085-3688; e-ISSN : 2460-0997

Optimization of software defects prediction in imbalanced class using a combination of resampling methods with support vector machine

and logistic regression

 181

Jurnal Infotel Vol.13 No.4 November 2021

https://doi.org/10.20895/infotel.v13i4.726

Data Set Oversampling
Under-

sampling
Hybrid

MW1 0.9001 0.5000 0.8960

PC1 0.9322 0.7692 0.9333

PC3 0.9041 0.7831 0.8812

PC4 0.9233 0.9167 0.9398

Average 0.9165 0.7188 0.8998

Table 6 shows that the AUC value of the

oversampling and SVM combination of the five data

sets, three data sets have the highest AUC value. The

average result of the highest AUC value using the

oversampling and SVM methods is 91.65%. Based on

the average AUC value of the combination of

oversampling and SVM methods > 90%, it is proven

that the proposed combination of the model has

excellent performance for software defects prediction

in an imbalanced class.

C. Analysis Combination Method of Resampling and

LR Algorithm

The results of the accuracy calculation using a

combination of oversampling, under-sampling, or

Hybrid methods with the LR algorithm are shown in

Table 7.

Table 7. Comparison of accuracy value for combination method

resampling and LR algorithm

Data Set Oversampling
Under-

sampling
Hybrid

CM1 0.8571 0.4118 0.7826

MW1 0.7717 0.5833 0.6604

PC1 0.8498 0.6400 0.8431

PC3 0.7829 0.7091 0.8009

PC4 0.8254 0.8551 0.8541

Average 0.8174 0.6399 0.7882

Table 7 shows that of the five data sets, three data
sets have high accuracy when using a combination of
oversampling and LR methods. The average accuracy
results are shown in Table 7; the combination method
of oversampling and the LR algorithm have the highest
accuracy of 81.74%. The average accuracy>80%
proves that the combination of the proposed methods is
high accuracy for software defects prediction in
imbalanced class.

The results of the AUC calculation using a

combination of oversampling, under-sampling, or

Hybrid methods with the LR algorithm are shown in

Table 8.

Table 8. Comparison of AUC Value for Combination Method

Resampling and LR Algorithm

Data Set Oversampling
Under-

sampling
Hybrid

CM1 0.8886 0.4028 0.7965

MW1 0.8400 0.6667 0.6624

PC1 0.9084 0.6346 0.9109

Data Set Oversampling
Under-

sampling
Hybrid

PC3 0.8637 0.7910 0.8412

PC4 0.9230 0.9461 0.9364

Average 0.8847 0.6882 0.8295

Table 8 shows that the AUC value of the

oversampling and LR combination of the five data sets,

three data sets have the highest AUC value. The average

result of the highest AUC value using the oversampling

and LR methods is 88.47%. Based on the average AUC

value of the combination of oversampling and SVM

methods > 80%, it is proven that the proposed

combination of the model has good performance for

software defects prediction with an imbalanced class.

DISCUSSION

The results of testing the AUC values in Table 7 and

Table 8 show the proposed best software defect

prediction in an imbalanced class method using a

combination of oversampling methods for the

resampling process. In addition, using the resampling

method before classification proses using the SVM and

LR algorithms, on average, increases classification

performance, as shown in Table 9.

Table 9. Improved Classification Performance using The

Resampling Process

Data Set

Increase in AUC (%)

LR SVM

CM1 11.08 35.43

MW1 5.18 16.75

PC1 12.32 16.05

PC3 4.75 12.33

PC4 3.50 5.43

Average 7.36 17.19

The average increase in AUC values in Table 9

shows that using the resampling method can improve

the classification performance for software defect

prediction. The most significant increase in the AUC

value in the SVM algorithm is 17.19% compared to the

LR algorithm at 7.26, which proves the resampling

process works very well to improve the performance of

the SVM algorithm to software defects prediction in

imbalanced class.

Table 5 and Table 7 show that combining the

oversampling method with both classification

algorithms dominates as the best resampling method in

dealing with imbalanced class. The results of

comparing the accuracy of the oversampling process

combined with the SVM and LR algorithms are

presented in Fig. 2.

ISSN : 2085-3688; e-ISSN : 2460-0997

Optimization of software defects prediction in imbalanced class using a combination of resampling methods with support vector machine

and logistic regression

 182

Jurnal Infotel Vol.13 No.4 November 2021

https://doi.org/10.20895/infotel.v13i4.726

Fig.2. Comparison of accuracy value chart the combination

oversampling (OS) with SVM and LR algorithms

Fig.2 shows the majority of accuracy value for the
best software defects predicted using a combination of
oversampling and SVM algorithms. The average
accuracy of the oversampling combination and SVM
methods is 2.28% higher than the oversampling and LR
methods.

Table 6 and Table 8 show that combining the
oversampling method with both classification
algorithms dominates as the best resampling method in
dealing with imbalanced classes. Fig.3 shows the
comparison of the AUC value of the combination
method oversampling with the SVM and LR
algorithms. Fig.3. shows all of the AUC values for the
best software defects prediction using a combination of
oversampling and SVM algorithms. The average AUC
of the combination of oversampling and SVM methods
is 3.17% higher than the oversampling and LR
methods.

Fig. 3. Comparison of AUC value chart the combination

Oversampling (OS) using SVM and LR algorithms

 The best-combined performance of the proposed

method is a combination of oversampling with SVM

for software defects prediction with an imbalanced

class. Table 9. shows a comparison of the performance

of the best model proposed in this paper with the model

proposed by [11], [15] to predict software defects.

Research conducted by [11] proposed a combination

method of traditional Artificial Neural Network (ANN)

and a new Artificial Bee Colony (ABC) algorithm. In

addition, an artificial Neuro-Fuzzy Inference system as

a basic classifier using SMOTE technique to balance

the dataset was proposed by [15].

Table 10. Comparison of the AUC values of the proposed method

with other studies

Data Set

Proposed

Method
[11] [15]

CM1 0.9226 0.7700 0.7400

MW1 0.9001 - -

PC1 0.9322 0.8200 0.7300

PC3 0.9041 - -

PC4 0.9233 - -

Average 0.9165 0.7950 0.7350

 Table 10 shows the results of the AUC test using the

same data set, indicating that the proposed method is

on average 7.52% higher than the proposed method

[11], [15]. This analysis proves that the combination of

the oversampling method with SVM has a better

classification performance than the proposed method

[11], [15] for software defects prediction in imbalanced

class. The overall performance of the combined

oversampling method with SVM provides high

accuracy and is excellent at software defects prediction

in an imbalanced class

CONCLUSION

 This study proposed a combination resampling

method with a classification algorithm to software

defects prediction in an imbalanced class. Testing the

proposed model uses five data sets from 13 data sets

from the NASA MDP data set, with the same attributes

and have dichotomous characteristics. The

performance evaluation of the proposed method uses a

t-test, the AUC measure, and the Accuracy value. The

t-test shows the 𝑃𝑉𝑎𝑙𝑢𝑒 < 𝛼 = 0.0344 < 0.05 and the

𝑡𝑐𝑜𝑢𝑛𝑡 > 𝑡𝑡𝑎𝑏𝑙𝑒 = 3.1524 > 2.7765, which proves

experimental value gave significant results between the

combination method resampling and the SVM

algorithm compared to the combination method of

resampling and LR algorithms in an imbalanced class.

The performance of the classification algorithm has

also improved with the use of the resampling process,

the average increase in AUC values in the SVM

algorithm is 17.19%, and the LR algorithm is at 7.26%

compared to without the resampling process.

Combining the oversampling method with the SVM

algorithm is more accurate for software defects

prediction with an average accuracy value of 84.02%,

which is 2.3% higher than the LR classification

algorithm. The average AUC value for combining the

oversampling method with the SVM algorithm is >

90%, which is 91.65%, indicating that the proposed

model is excellent at software defects prediction for

imbalanced class compared to the LR classification

algorithm.

REFERENCES

[1] A. S. Andreou dan S. P. Chatzis, “Software defect

prediction using doubly stochastic Poisson processes

driven by stochastic belief networks,” J. Syst. Softw.,

vol. 122, hal. 72–82, Des 2016, doi:

ISSN : 2085-3688; e-ISSN : 2460-0997

Optimization of software defects prediction in imbalanced class using a combination of resampling methods with support vector machine

and logistic regression

 183

Jurnal Infotel Vol.13 No.4 November 2021

https://doi.org/10.20895/infotel.v13i4.726

10.1016/j.jss.2016.09.001.

[2] A. Iqbal et al., “Performance Analysis of Machine

Learning Techniques on Software Defect Prediction

using NASA Datasets,” Int. J. Adv. Comput. Sci. Appl.,

vol. 10, no. 5, hal. 300–308, 2019, doi:

10.14569/IJACSA.2019.0100538.

[3] M. A. Memon, M.-U.-R. Magsi, M. Memon, dan S.

Hyder, “Defects Prediction and Prevention

Approaches for Quality Software Development,” Int. J.

Adv. Comput. Sci. Appl., vol. 9, no. 8, hal. 451–457,

2018, doi: 10.14569/IJACSA.2018.090857.

[4] D. Bowes, T. Hall, dan J. Petrić, “Software defect

prediction: do different classifiers find the same

defects,” Softw. Qual. J., vol. 26, no. 2, hal. 525–552,

Jun 2018, doi: 10.1007/s11219-016-9353-3.

[5] Y. Shao, B. Liu, S. Wang, dan G. Li, “A novel software

defect prediction based on atomic class-association

rule mining,” Expert Syst. Appl., vol. 114, hal. 237–

254, Des 2018, doi: 10.1016/j.eswa.2018.07.042.

[6] X. Jing, F. Wu, X. Dong, dan B. Xu, “An Improved

SDA Based Defect Prediction Framework for Both

Within-Project and Cross-Project Class-Imbalance

Problems,” IEEE Trans. Softw. Eng., vol. 43, no. 4, hal.

321–339, Apr 2017, doi: 10.1109/TSE.2016.2597849.

[7] R. S. Wahono, “A Systematic Literature Review of

Software Defect Prediction : Research Trends ,

Datasets , Methods and Frameworks,” J. Softw. Eng.,

vol. 1, no. 1, hal. 1–16, 2015.

[8] N. Gayatri, S. Nickolas, dan A. V Reddy, “Feature

Selection Using Decision Tree Induction in Class level

Metrics Dataset for Software Defect Predictions,” in

Proceedings of the World Congress on Engineering

and Computer Science (WCECS) 2010, 2010, vol. I,

hal. 124–129.

[9] Y. Peng, G. Wang, dan H. Wang, “User preferences

based software defect detection algorithms selection

using MCDM,” Inf. Sci. (Ny)., vol. 191, hal. 3–13,

2012, doi: 10.1016/j.ins.2010.04.019.

[10] Z. Sun, Q. Song, dan X. Zhu, “Using Coding Based

Ensemble Learning to Improve Software Defect

Prediction,” IEEE Trans. Syst. Man, Cybern. Part C

(Applications Rev., vol. 42, no. 6, hal. 1806–1817,

2012, doi: 10.1109/TSMCC.2012.2226152.

[11] Ö. F. Arar dan K. Ayan, “Software defect prediction

using cost-sensitive neural network,” Appl. Soft

Comput., vol. 33, hal. 263–277, Agu 2015, doi:

10.1016/j.asoc.2015.04.045.

[12] G. Fan, X. Diao, H. Yu, K. Yang, dan L. Chen,

“Software Defect Prediction via Attention-Based

Recurrent Neural Network,” Sci. Program., vol. 2019,

hal. 1–14, Apr 2019, doi: 10.1155/2019/6230953.

[13] B. Turhan, G. Kocak, dan A. Bener, “Data mining

source code for locating software bugs: A case study in

telecommunication industry,” Expert Syst. Appl., vol.

36, no. 6, hal. 9986–9990, Agu 2009, doi:

10.1016/j.eswa.2008.12.028.

[14] R. Batuwita dan V. Palade, “FSVM-CIL : Fuzzy

Support Vector Machines for Class Imbalance

Learning,” IEEE Trans. Fuzzy Syst., vol. 18, no. 3, hal.

558–571, 2010, doi: 10.1109/TFUZZ.2010.2042721.

[15] S. S. Maddipati dan M. Srinivas, “An Hybrid Approach

for Cost Effective Prediction of Software Defects,” Int.

J. Adv. Comput. Sci. Appl., vol. 12, no. 2, hal. 145–152,

2021, doi: 10.14569/IJACSA.2021.0120219.

[16] K. Sahu dan R. K. Srivastava, “Soft computing

approach for prediction of software reliability,” ICIC

Express Lett., no. March 2019, 2021, doi:

10.24507/icicel.12.12.1213.

[17] A. R. P. Periasamy dan A. Mishbahulhuda, “Data

Mining Techniques in Software Defect Prediction,”

Int. J. Adv. Res. Comput. Sci. Softw. Eng., vol. 7, no. 3,

hal. 301–303, Mar 2017, doi:

10.23956/ijarcsse/V7I3/0173.

[18] G. Denaro, “Estimating software fault-proneness for

tuning testing activities,” in Proceedings of the 22nd

international conference on Software engineering -

ICSE ’00, 2000, hal. 704–706, doi:

10.1145/337180.337592.

[19] R. Shatnawi dan W. Li, “An Empirical Investigation of

Predicting Fault Count, Fix Cost and Effort Using

Software Metrics,” Int. J. Adv. Comput. Sci. Appl., vol.

7, no. 2, hal. 484–491, 2016, doi:

10.14569/IJACSA.2016.070264.

[20] D. Gray, D. Bowes, N. Davey, Y. Sun, dan B.

Christianson, “Software defect prediction using static

code metrics underestimates defect-proneness,” in The

2010 International Joint Conference on Neural

Networks (IJCNN), Jul 2010, hal. 1–7, doi:

10.1109/IJCNN.2010.5596650.

[21] Haibo He dan E. A. Garcia, “Learning from

Imbalanced Data,” IEEE Trans. Knowl. Data Eng., vol.

21, no. 9, hal. 1263–1284, Sep 2009, doi:

10.1109/TKDE.2008.239.

[22] T. M. Khoshgoftaar, K. Gao, dan N. Seliya, “Attribute

Selection and Imbalanced Data: Problems in Software

Defect Prediction,” in 2010 22nd IEEE International

Conference on Tools with Artificial Intelligence, Okt

2010, vol. 1, hal. 137–144, doi:

10.1109/ICTAI.2010.27.

[23] K. Teh, P. Armitage, S. Tesfaye, D. Selvarajah, dan I.

D. Wilkinson, “Imbalanced learning: Improving

classification of diabetic neuropathy from magnetic

resonance imaging,” PLoS One, vol. 15, no. 12, hal. 1–

15, Des 2020, doi: 10.1371/journal.pone.0243907.

[24] X. Sheng, Z. Junhai, W. Xiaolan, dan Y. Ming, “A new

resampling method of imbalanced large data based on

class boundary,” in 2015 International Conference on

Machine Learning and Cybernetics (ICMLC), Jul

2015, vol. 2, hal. 826–831, doi:

10.1109/ICMLC.2015.7340660.

[25] D. Zhang, W. Liu, X. Gong, dan H. Jin, “A novel

improved SMOTE resampling algorithm based on

fractal,” J. Comput. Inf. Syst., vol. 7, no. 6, hal. 2204–

2211, 2011.

[26] F. Charte, A. J. Rivera, J. María, dan F. Herrera,

“Knowledge-Based Systems MLSMOTE :

Approaching imbalanced multilabel learning through

synthetic instance generation,” KNOWLEDGE-

BASED Syst., vol. 89, hal. 385–397, 2015, doi:

10.1016/j.knosys.2015.07.019.

[27] T. Hall, S. Beecham, D. Bowes, D. Gray, dan S.

Counsell, “A Systematic Literature Review on Fault

Prediction Performance in Software Engineering,”

IEEE Trans. Softw. Eng., vol. 38, no. 6, hal. 1276–

1304, Nov 2012, doi: 10.1109/TSE.2011.103.

[28] F. Cheng, G. Fu, X. Zhang, dan J. Qiu, “Multi-

ISSN : 2085-3688; e-ISSN : 2460-0997

Optimization of software defects prediction in imbalanced class using a combination of resampling methods with support vector machine

and logistic regression

 184

Jurnal Infotel Vol.13 No.4 November 2021

https://doi.org/10.20895/infotel.v13i4.726

objective evolutionary algorithm for optimizing the

partial area under the ROC curve,” Knowledge-Based

Syst., vol. 170, hal. 61–69, Apr 2019, doi:

10.1016/j.knosys.2019.01.029.

[29] M. Bach, A. Werner, J. Żywiec, dan W. Pluskiewicz,

“The study of under- and over-sampling methods’

utility in analysis of highly imbalanced data on

osteoporosis,” Inf. Sci. (Ny)., vol. 384, hal. 174–190,

Apr 2017, doi: 10.1016/j.ins.2016.09.038.

[30] U. R. Salunkhe dan S. N. Mali, “Classifier Ensemble

Design for Imbalanced Data Classification: A Hybrid

Approach,” Procedia Comput. Sci., vol. 85, hal. 725–

732, 2016, doi: 10.1016/j.procs.2016.05.259.

[31] G. K. Armah, G. Luo, K. Qin, dan A. S. Mbandu,

“Applying Variant Variable Regularized Logistic

Regression for Modeling Software Defect Predictor,”

Lect. Notes Softw. Eng., vol. 4, no. 2, hal. 107–115, Mei

2016, doi: 10.7763/LNSE.2016.V4.234.

[32] K. Ghazvini, M. Yousefi, F. Firoozeh, dan S.

Mansouri, “Predictors of tuberculosis: Application of a

logistic regression model,” Gene Reports, vol. 17, hal.

1–4, Des 2019, doi: 10.1016/j.genrep.2019.100527.

[33] F. Gorunescu, Data Mining: Concepts, models and

techniques, vol. 12. Springer-Verlag Berlin

Heidelberg, 2011.

