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The effect of power spectral density on the
electroencephalography of autistic children based on the
welch periodogram method
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Abstract — Autism spectrum disorder is a serious mental disorder affecting social behavior. Some children also face
intellectual delay. In people with autism spectrum disorder, the signals detected have abnormalities compared to normal
people. This can be a reference in diagnosing the disorder with electroencephalography. This study will analyze the effect of
power spectral density on the electroencephalography of autistic children and also compare it with the power spectral density
value on the electroencephalography of normal children using the Welch periodogram method approach. In the preprocessing
stage, the independent component analysis method will be applied to remove artifacts, and a finite impulse response filter to
reduce noise in the electroencephalography signal. The study results indicate differences in the power spectral density values
obtained in the autistic and normal electroencephalography signals. The power spectral density value obtained in the autistic
electroencephalography signal is higher than the normal electroencephalography signal in all frequency sub-bands. From the
study results, the highest power spectral density value obtained by the autistic electroencephalography signal is in the delta
sub-band, which is 54.06 dB/Hz, while the normal electroencephalography signal is only 33.14 dB/Hz at the same frequency
sub-band. And in the Alpha and Beta sub-bands, the normal electroencephalography signal increases the power spectral
density value, while in the autistic electroencephalography signal, the power spectral density value decreases in the Alpha
and Beta sub-bands. In addition, finite impulse response and independent component analysis methods can also reduce noise
and artifacts contained in autistic and normal electroencephalography signals.
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I. INTRODUCTION Many studies were conducted on ASD using elec-
troencephalogram (EEG) and aimed to reveal differ-
ences between the brain states of autistic participants
and controls [3]. In people with ASD, the signals
detected have abnormalities compared to normal people.
In another study, EEG was used to study ASD subjects
at rest. It was found that there was a big difference
between ASD participants and controls, where ASD
participants showed excessive power in the low and
high-frequency bands [4]. This can be a reference in

Autism spectrum disorder (ASD) is a serious dis-
order that affects cognitive and social behavior. Some
children also face intellectual delay. The exact cause of
ASD has not been found, and there are no biological
tests to diagnose ASD. Moreover, current diagnostic
practice is based solely on behavioral patterns [1]. But
as we know that ASD is a disorder in a person’s brain,
so there have been many studies to scan a person’s
brain signals to detect the abnormality [2].



diagnosing ASD abnormalities with EEG. The study
of EEG signals involves the use of a brain-computer
interface (BCI). BCI is a system that provides direct
communication between the brain and a computer or
other external device [5].

In this study, the autism EEG and normal EEG
signals will be analyzed, which have the parameter
power spectral density (PSD). And the results of the
PSD parameters of the two signals will be analyzed
for differences. The PSD parameter of the EEG signal
needs to be analyzed because, in previous studies, it
was explained that subjects with brain disorders had
higher PSD values than normal subjects [6]. So that
there is a difference between the PSD value of a normal
EEG signal and an EEG signal that has abnormalities

in brain activity, one of which is in people with autism.

However, before getting the PSD parameters on
the EEG signal, it is necessary to do a preprocessing
stage first. At the preprocessing stage, artifacts will be
removed, and artifacts are signals that do not come from
the brain but from eye blinks, heartbeats, and other
muscle movements so that it can reduce the quality
of the EEG signal. For this reason, the independent
component analysis (ICA) method is used. ICA involves
a linear decomposition of the aggregate channel activity
into an independent component series spatially filtered
from the EEG time series. So that it can eliminate
artifacts and components that represent the original
brain activity [7].

The method used to obtain the PSD parameter in
this study is the Welch Periodogram method. This
method has been widely used to obtain PSD parameters
from EEG signals in previous studies and obtained
satisfactory results [8]-[13]. This method also performs
satisfactorily in obtaining PSD parameters than other
methods, such as Burg, Multitaper, and periodogram
[14]-[16]. Not only in epilepsy and autism, but the
Welch method is also used in people with Parkinson’s,
sleep disorder, and stress to analyze differences in PSD
values [8], [9], [17]. Due to this reason, this method is
used in this study to obtain the PSD value.

This study analyzes PSD parameters in normal EEG
and autism EEG signals. PSD values will be obtained
for each frequency sub band, namely Delta, Theta,
Alpha, and Beta, as has been done in previous research
in calcifying emotions [18]. This is done because each
frequency sub band represents a person’s activities, as
high frequencies represent concentration and intense
mental activity (known as Alpha and Beta waves). In
contrast, low-frequency packets represent low mental
activity, namely, sleep situations (represented by Delta
and Theta) [19]. And as it is known that people with
autism have difficulty controlling and expressing their
emotions in social interactions, the PSD value obtained
in each frequency sub band has a different value

between normal EEG signals and autistic EEG signals.

It is hoped that the PSD value in each frequency sub-
band can be a reference in detecting autism.

II. RESEARCH METHOD

This study will analyze the PSD value of autistic and
normal EEG signals using Welch’s Periodogram method
before filtering using FIR to remove noise above 30 Hz
and below 0.5 Hz. The ICA method will also eliminate
artifacts in the EEG signal channel for better analysis
results. The following is the flowchart of the study flow.

A. Material

This study used datasets from King Abdul Aziz
University (KUA) recorded using BCI2000. BCI is a
system that provides direct communication between the
brain and a computer or external device [20]: using 16
electrodes at locations Fpl, F3, F7, T3, TS, O1, C4,
Fp2, Fz, F4, F8, C3, Cz, Pz, Oz, and O2. The reference
electrode is placed on the right ear and the ground
electrode at the AFz location. In addition, this dataset
has a sampling rate of 256 Hz, and the data was obtained
using a notch filter at 60 Hz and a passband filter
between 0.1 Hz and 60 Hz. The electrode placement
configuration on the scalp is as follows [21].

B. Finite Impuls Response (FIR)

Finite impulse response (FIR) has a finite response
and has no poles compared to IIR filters. Also, FIR is
more stable than other digital filters and is preferred by
researchers. In general, the FIR filter output y[k] can
be expressed mathematically as (1) [22].
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Finite impulse response may produce excessive
ripples in the pass-band and create low stop-band
attenuation. Windowing techniques can overcome this
problem during the filtering process. If given a window
function (w[n]) and the impulse response of an ideal
filter (hq[n]), then the impulse response of the actual
filter can be expressed in (2) [22].

hn] = hq [n]w[n] )

Fig. 3 shows the application of the study flow in
applying FIR filtering to normal and Autistic EEG
signals.

C. Independent Component Analysis (ICA)

ICA is a technique that enables the separation of
signal mixtures into distinct sources. ICA extracts the
sources by exploring the underlying independence of
the measured data. It involves higher-order statistics to
recover statistically independent signals from unknown
linearly mixed observations. This technique becomes
superior to other techniques, such as principal compo-
nent analysis (PCA) [23]. The generative model of ICA
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Fig. 2. Placement of 16 electrodes on the datasets (KAU).

(i.e., the model that explains how the mixture signal is
generated) can be seen in (3) as follows:

X =AS 3)

This model assumes that the mixed signal is the prod-
uct of instantaneous linear combinations of independent
sources. Or in other words, the mixed signal consists
of the mixing matrix (A) and the signal’s independent
components (S5). The goal of ICA is only to recover
the original signal from the observations. Therefore, it
is necessary to obtain the un-mixing matrix W, which
is the inverse matrix of the mixing matrix, as in (4)
[24].

S=wX “)

Fig. 4 shows the application of the ICA method to
reduce artifacts in the autistic and normal EEG signals
used in this study.

D. Periodogram Welch

PSD describes the way the power of a signal or
time series is distributed with frequency. PSD is the
Fourier transform of the autocorrelation function of the
signal. The power of a signal in a particular frequency
band can be calculated by integrating the positive
and negative frequencies [25]. PSD is a good tool
for stationary signal processing and is suitable for
narrowband signals. The PSD method is a common
signal-processing technique that distributes signal power
through frequency and shows energy power as a
function of frequency [26].

PSD displays the power distribution between fre-
quency components. Using the pwelch function of
MATLAB, this estimator is applied to fragmented time
samples. In short, this method divides the time series
data into several parts and then, for each part, calculates
a new period, and the average PSD is estimated [27].
Based on Welch’s method, PSD estimation involves
dividing the signal into segments, taking the modified
periodogram of these segments, and averaging the
modified periodogram [28], [29]. Mathematically, the
Welch Periodogram is formulated as (5):

N-1
A (k) = Z x (n) we I T 5)
n=0

where A;(k) is FFT from segment windowed. In order
to gain A;(k), it is needed the input signal of (z;(n))
and the window function (w(n)).
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As mentioned, after obtaining the FFT from win-
dowed segment (A;(k)), then, periodogram (¢;(k)) are
gained and P show the window power of (w(n)) [28]:

1 N—-1
2
Pzﬁzymw (7)

The PSD calculation with Welch is the average of the
periodogram, which is [28]:

L
S=7> o (k) )
=1

It can be seen that Welch’s method calculates
the periodogram of overlapping segments with 50%
overlap. Calculating L for the N-point FFT is necessary,
assuming that the input signal is divided into L segments
of length N. With a 50% overlap, half of the samples
over two consecutive segments will be the same [28].
For the selection of the window used, there are two
requirements for the window function: the width of the
main lobe should be as narrow as possible to obtain a
better resolution, and the side lobes should be as small
as possible to increase the energy in the main lobe and
increase the stopband attenuation [30].

III. RESULT

A. Finite Impulse Response (FIR) Filter Application
Results

This study will analyze the application of the FIR
filter on normal and autistic EEG signals. In this
EEG signal dataset, a passband filter has been applied
between 0.1 Hz to 60 Hz, but because the EEG signals
analyzed are only in the delta (1-4 Hz), theta (4-8 Hz),

alpha (8-15 Hz), and beta (15-30 Hz) frequency sub-
bands, FIR filter is applied at the upper limit of 30 Hz
and for the lower limit of 0.5 Hz.

The FIR filter is applied using EEGLAB, where the
basic FIR filter feature is used in EEGLAB, where
the Basic FIR filter feature on this EEG lab uses a
hamming window. This Basic FIR filter feature can
determine the length of the window automatically,
which is determined by the passband edges [31]. The
application of the FIR filter at the lower limit of 0.5
Hz is made because the ICA method is sensitive to
frequencies below 0.5 Hz. In addition to eliminating
unwanted frequencies, the FIR filter at the upper limit
of 30 Hz also reduces artifacts. The following are the
results of applying the FIR filter to the EEG signal.

Fig. 5 shows the results of normal EEG signals in
the frequency domain or PSD parameters, where the
PSD value of the normal EEG signal has been applied
to the FIR filter in the range of 0.5 Hz to 30 Hz. It can
be seen in Fig. 5 that the PSD value of the normal EEG
signal in the frequency domain is zero at frequencies
above 30 Hz. This is done because the EEG signal to be
analyzed is only up to the Beta frequency sub-band (15-
30 Hz), for that frequency above 30 Hz is not needed,
so that the FIR filter is applied at the upper limit of 30
Hz. besides the application of the FIR filter at the upper
limit of 30 Hz also aims to reduce artifacts caused by
muscles. The FIR filter is applied to all autistic and
normal EEG signals.

B. Implementation Result of ICA

In this study, the autistic and normal EEG datasets
used still contain artifacts and noise that result in poor
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Fig. 5. Results of applying FIR filter to the EEG signal of the Ist normal subject.

EEG signal quality. Artifacts in EEG signals can be in
the form of eye blinks, muscle movements, and heart
rate. The most common type of artifact found in EEG
signals is eye blink. Since artifacts are signals that do
not originate from the brain, they must be removed
from EEG signals to improve accuracy in analysis.

The ICA method will be applied to the EEG
signal. The EEG signal will be made into independent
components by obtaining the unmixing matrix of the
normal EEG signal by using the EEGLAB feature,
namely “decomposed data by ICA”. This EEGLAB
feature uses the following command:

[weights,sphere] = runica(data);

The command will output two variables, weights,
and sphere, where weights are the ICA weight matrix
and sphere is the data sphering matrix. The unmixing
matrix is obtained by multiplying the two variables. The
‘runica’ command uses trial and training methods on the
data so that the weight and sphere variables are obtained
[32]. Since the data of a signal consists of a mixing
matrix and independent components, multiplying with
the unmixing matrix, the independent components of
the signal will be obtained. The following are the results
of applying ICA to autistic and normal EEG signals.

Fig. 6 determines the comparison between the EEG
signal of the 1st normal subject before and after
applying the ICA method. It can be seen that before the
31st second, there is a significant voltage drop in the
EEG signal of the 1st normal subject before the ICA
method is applied. This is caused by the movement of
closing the eyes when recording the EEG signal of the
1st normal subject.

After applying ICA, the artifacts in the form of eye
blinks can be reduced by removing the independent
components in the signal originating from eye blinks.
It can be seen in Fig. 4 b that the voltage drop of the
EEG signal of the 1st normal subject is reduced in all
EEG signal channels, especially in the Fz channel to

C3 channel, where the voltage drop due to the artifact
of closing the eyes in these channels can be eliminated.
This is because the independent components that contain
eye artifacts in these channels can be removed from
the EEG signal using the ICA method. after removing
some independent components that contain artifacts.

As in normal EEG signals, the ICA method is also
applied to autistic EEG signals. It can be seen in
Fig. 7 a that in the T3, FP2, and Cz channels, there
is a significant increase and decrease in voltage which
indicates that in these channels, there are artifacts that
can cause a decrease in the quality of the EEG signal
to be analyzed.

However, after applying ICA and the independent
components containing artifacts are removed, it can
be seen in Fig. 7 b the artifacts contained in the T3,
FP2, and Cz channels have disappeared due to the
rejection of the independent components containing
these artifacts so that the original EEG signal can be
maintained. That way, the analysis results obtained will
be more accurate.

C. Analysis of the Calculation Results of the PSD Value
using the Welch Periodogram Method

After obtaining the results of autistic and normal
EEG signals that have been applied, FIR filters and
ICA methods removed independent components con-
taining artifacts. Next is calculating the power spectral
density value on normal and autistic EEG signals. The
calculation of the PSD value will be carried out in the
MATLAB application. EEG signal data applied to FIR
and ICA filters in the previous stage is inputted into
MATLAB to calculate the PSD value using the Welch
Periodogram method. The following are the results of
PSD values on normal and autistic EEG signals. Fig. 8
to Fig. 11 is the PSD value obtained using the Welch
periodogram method in the frequency range of 0 Hz
to 30 Hz. Where the PSD value will be analyzed at
several frequency sub-bands, namely Delta (0 Hz-4
Hz), Theta (4 Hz-8 Hz), Alpha (8 Hz-15 Hz), and Beta
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Fig. 7. EEG signal of 1st autistic subject: a) before applying ICA b) after applying ICA.

(15 Hz-30 Hz). This is done because each frequency
sub-band represents different brain activity, so there
will be differences in PSD values in each sub-band
between normal and autistic EEG signals.

1) PSD analysis of the delta sub-band

Fig. 8 to Fig. 11 are the results of PSD values
obtained on autistic and normal EEG signals using the
welch periodogram method. It can be seen in Fig. 8,
and Fig. 9 that the PSD value obtained in the delta
sub-band (0 Hz-4 Hz) of the normal EEG signal is
lower than the PSD value obtained in the autistic EEG
signal as seen in Fig. 10 and Fig. 11. The highest PSD
value obtained in the normal EEG signal is only 33.14
dB/Hz in the normal EEG signal of the 2nd subject,
while in the autistic EEG signal the highest PSD value
obtained is 52.17 dB/Hz in the autistic EEG signal of
the 2nd subject. From the results obtained, it can be
seen that the PSD value obtained is getting lower as
the frequency increases in both normal EEG signals
and autistic EEG signals.

2) PSD analysis of the theta sub-band

The next frequency sub-band to be analyzed is the
Theta frequency sub-band in the frequency range of 4
Hz to 8 Hz. It can be seen in Fig. 8 to Fig. 11 that

the PSD value obtained in autistic and normal EEG
signals is lower than the previous Delta sub-band. This
is because the PSD value will be lower as the frequency
increases, just like in the previous Delta sub-band. The
PSD value on the autistic EEG signal is higher than the
PSD value on the normal EEG signal. In the normal
EEG signal, the highest PSD value obtained is only
15.26 dB/Hz in the 2nd normal subject, while in the
autistic EEG signal, the highest PSD value obtained is
43.4 dB/Hz in the 2nd autistic subject.

3) PSD analysis of the alpha sub-band

It can be seen, Fig. 11 shows the Alpha sub-band
(8 Hz-15 Hz) of autistic and normal EEG signals. In
both normal EEG signals, there is an increase in PSD
value along with the increase in frequency, whereas this
does not occur in autistic EEG signals. In the autistic
EEG signal, the PSD value continues to decrease as
in the previous frequency sub-band. However, the PSD
value obtained in the autistic EEG signal remains higher
than the normal EEG signal, just like in the previous
frequency sub-band. In the autistic EEG signal, the
highest PSD value obtained is 37.76 dB/Hz in the 2nd
autistic subject, while in the normal EEG signal, the
highest PSD value obtained is only 10.31 dB/Hz in the
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2nd normal subject.

4) PSD analysis of the beta sub-band

In the Beta sub-band (15 Hz-30 Hz), the same
thing happens as in the Alpha sub-band, where in
the Beta sub-band, there is an increase in the PSD
value in normal EEG signals along with the increase
in frequency as seen in Fig. 8 and Fig. 9. While in
the autistic EEG signal, the PSD value decreases as in
the previous frequency sub-band. The Beta sub-band
has the lowest PSD value compared to the previous
sub-band, and this is because the Beta sub-band has the
highest frequency compared to other sub-bands. The
PSD value in the autistic EEG signal is also higher
in this Beta sub-band, where the highest PSD value
obtained is 32.64 dB/Hz in the 2nd autistic subject. In
comparison, in the normal EEG signal, the highest PSD
value is only 10.43 dB/Hz in the 2nd normal subject.

IV. DISCUSSION

After obtaining the PSD value in the Delta, Theta,
Alpha, and Beta frequency sub-bands on all normal
EEG signals and autistic EEG signals, it can be said
that the PSD value obtained on the autistic EEG signal
is higher than the normal EEG signal as a whole in
the frequency range 0 Hz to 30 Hz, this is following
what was obtained in previous studies [6], that the
PSD value in subjects affected by brain disorders has a
higher PSD value compared to normal subjects. What
distinguishes this study from the previous study [6] is
that in the previous study, the PSD value obtained was
the PSD value in people with brain disorders in general.
Whereas this study only focuses on autistic people.
This study analyzes the PSD value in each frequency
sub-band (Delta, Theta, Alpha, and Beta). Unlike the
previous study [6], the PSD value is analyzed only in
general. It can be seen from the study results that the
Delta frequency sub-band has the highest PSD value
of the other frequency sub-bands both in normal EEG
signals and in autistic EEG signals. And the PSD value

obtained in the autistic EEG signal is higher than the
normal EEG signal, wherein the autistic EEG signal, the
highest PSD value obtained is 52.17 dB/Hz in the Delta
sub-band of the autistic EEG signal. And in the normal
EEG signal the highest PSD value is only 33.14 dB/Hz
in the Delta sub-band of the normal EEG signal. In
addition, in normal EEG signals, there is an increase in
PSD values in the Alpha and Beta frequency sub-bands,
while in autistic EEG signals, the PSD values in the
Alpha and Beta frequency sub-bands have decreased.

V. CONCLUSION

There are differences in PSD values obtained in
autistic and normal EEG signals, where the autistic EEG
signal has a higher PSD value than the normal EEG
signal in all frequency sub-bands. It can be seen from
the study results that the highest PSD value obtained by
the autistic EEG signal is in the Delta sub-band, which
is 52.17 dB/Hz, while the normal EEG signal is only
33.14 dB/Hz. And in the Alpha and Beta frequency
sub-bands, there are differences in the pattern of PSD
values obtained in normal EEG signals, were in both
normal EEG signals, the PSD value increases in the
Alpha and Beta sub-bands. In contrast, in autistic EEG
signals, the PSD value decreases in both sub-bands. So
this can also be a reference in detecting autism. FIR
filter and ICA method also perform well in reducing
noise and removing artifacts in EEG signals.
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