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Abstract — Real-time traffic monitoring is essential for operating an adaptive traffic lighting system and plays a significant
role in decision-making, mainly signaling in roadworks. When only one lane is accessible due to temporary road blockage,
early detection of oncoming vehicles is crucial to minimize bottlenecks near the traffic light that could result in congestion
and accidents. This research aimed to enhance the detection and tracking of traffic at a distance from the traffic light.
We utilized the vanishing point as a reference for detection and calculated the region of interest. The vanishing point is
estimated using weber orientation descriptor (WOD) method and Gabor filtering, while the region of interest is obtained
using a combination of background subtraction and frame difference method. In addition, we also used Kalman filtering to
track the detected traffic based on the likelihood of each detection to each motion track, and the selected motion track and
its detected traffic are categorized as oncoming traffic. We implemented the proposed method on twelve traffic surveillance
videos and evaluated the system performance based on how quickly it could detect oncoming traffic compared with the
R-CNN method. The proposed method detected target vehicles in an average of 17.75 frames, while the R-CNN method
required an average of 63.36 frames. Moreover, the proposed method’s precision depends on the number of pixel orientations
used to estimate the vanishing point and the definition of the region of interest. Therefore, the proposed method for enhancing
the safety and reliability of an adaptive traffic light system is reliable.
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I. INTRODUCTION common safety issues in roadworks areas [3], [7], [8].
Heiden er al. [9] said a failure to miss roadwork signs
could result in various accidents impacting roadwork
safety. Therefore, congestion, accident, and diminished
capacity are the effects of traffic obstruction in the
work zone [5]-[10]. Moreover, as vulnerable users,
contractors and plants operating at road construction
sites need protection during roadworks operations [6],
[11]. Consequently, traffic management is required dur-
ing the roadwork to protect and control traffic through
the roadworks, such as temporary road blockages or
speed limits through road works [12].

Even though roadworks have a negative impact,
such as on traffic and the environment [1], it is neces-
sary to maintain a good service for users [2]. Improving
road quality by employing continuous roadworks can
reduce traffic delays [3]. During roadwork that utilizes
one lane for both primary and secondary streams,
temporary road blockages in single-carriageways [4]
or more use of narrow lanes [5] are commonly em-
ployed. Depending on the number of lanes closed by
roadworks, the flow on the remaining lanes can be
reduced the capacity between 25 and 40 % [2], [6].
In addition, high-speed variation is one of the most Temporary road blockages that only allow traffic



Fig. 1. Sample of a captured scene from video test material: (a) Site
(h) Site 8; (i) Site 9; (j) Site 10; (k) Site 11; (1) Site 12.

to flow in one direction at a time can be challenging
to manage conventionally by humans as traffic con-
trollers. Due to their vulnerability to accidents, traffic
signals are safer for roadworkers as an alternative
traffic control method. Even though timing-based sig-
naling systems were commonly used in intersections
to reduce congestion [13], timing-based traffic lights
could be more effective because they must consider
real-time traffic conditions. Instead, it is recommended
that adaptive traffic lights be connected to cameras and
computers to capture real-time traffic conditions and
make decisions about signaling based on the traffic
from both sides of the road [14], [15]. These adaptive
traffic lights can manage traffic flow more effectively
and increase safety.

Adaptive traffic light systems face a significant
obstacle in detecting the detection of oncoming traffic,
such as the spatiotemporal coverage of traffic infor-
mation [16]. This early detection provides information
for the traffic light system to determine when to signal
the appropriate lights, as delayed decisions can lead
to sudden stops and potential accidents. However, the
camera’s perspective projection can make it challeng-
ing to detect oncoming traffic, mainly when the vehi-
cles are distant and appear small. The presence of non-
vehicle objects can further complicate this situation.
Moreover, the low resolution of the vehicle images
can limit the effectiveness of artificial intelligence
techniques, such as deep learning, for detecting these
small objects. Detecting and tracking oncoming traffic
precisely is a significant challenge for adaptive traffic
light systems [17]-[19].

This study presents a method for detecting on-
coming traffic by using the position of the vanishing
point in perspective projection as a reference. We-
ber Orientation Descriptor is a texture-based method
to estimate the vanishing point (WOD). Define the
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1; (b) Site 2; (c) Site 3; (d) Site 4; (e) Site 5; () Site 6; (g) Site 7;

region of interest (Rol) to concentrate detection on
the roadway region. This data is used to detect and
track oncoming traffic. The proposed method employs
background subtraction and Kalman filtering to detect
oncoming traffic and track detected objects. Twelve
In-Luck Company videos were utilized to test the
proposed method. In terms of how early the proposed
method could see oncoming traffic, it was compared
to the Regions with Convolutional Neural Networks
(R-CNN) performance of R-CNN.

This paper’s structure is as follows: Section II
introduces the video test materials and the design of
the proposed method. Then, section III describes the
results of the experiment. Section IV provides the eval-
uation of the proposed method. At the last, section V
summarizes the research finding in conclusion.

II. MATERIALS AND METHOD

This section discusses video test material and our
proposed method.

A. Video Test Material

Video footage for this study was obtained from In-
Luck Company, which provides security and traffic
guidance services at road construction sites. In-Luck
Company positions cameras on the road to record
daylight traffic activity. The camera footage shows
perspective projection, which makes distant traffic ap-
pear small. Fig. 1 shows a sample of the captured
scenes from the 12 videos used as test materials. The
duration of each video is 10 seconds. The selected
duration focuses on one vehicle that is coming toward
the camera.

Each video frame is represented as I(z,y,t) €
0,1,---,255, where € 1,2,--- N,, y €
1,2,---,Ny,and t € 1,2,---,T. N, and N, are
the width and height of the video frame, respectively.



In this study, the video test material has N, = 1920
and N, = 1080. T is the total video frames that are
calculated using (1).

T = Vduration X prs (l)

where Viyration (8) and Vi, (frame/s) are the duration
of the video and video frame rate, respectively. The
video frame rate used is 30 frame/s, except for Site 1
and Site 8, which used 20 frame/s.

I(x,y,t) is a vector that comprises three channels
of RGB color expressed in (2).

IR(£7 y»t)
IG(xvyat) (2)
IB(x,yvt)

where Ig(x,y,t), Ig(x,y,t), and Ip(x,y,t), is a
channel of red, green, and blue color, respectively. In
this study, I(x,y,t) is converted to a grayscale image.
Grayscale conversion is calculated using (3).

_ IR(xay7t) + IG(xayat) + IB(xay7t)
3

where I(x,y,t) is a grayscale conversion result used
as input for the proposed method.

I(z,y,t) =

Ix,y,t

3)

B. Proposed Method

In this study, we propose a method consisting of
three steps: initialization, traffic detection, and track-
ing oncoming traffic. As the initial step, initialization
involves defining the Rol and estimating the vanishing
point. The first process involves enclosing the region
where the traffic movement occurs in the captured
scene. This process employed background subtraction
to detect foreground objects and frame difference to de-
tect objects’ movement. Then, the objects’ movement
defines the Rol. The second process aims to estimate
the coordinate of the vanishing point from the video
frame. This process uses the weber orientation descrip-
tor (WOD) method [20] to calculate the differential
excitation of the frame texture features, followed by
Gabor filtering to calculate pixel orientation. The infor-
mation about the differential excitation and orientation
from every pixel is then used in a voting scheme to
estimate the coordinate of the vanishing point.

The second step uses the Rol and vanishing point
in the initial step to detect traffic. It also employed
background subtraction to detect objects. The last step
tracks the detected traffic by associating it with its
movement from frame to frame. We used Kalman
filtering to track the detected traffic based on the
likelihood of each detection to each motion track.
Then, the motion track for traffic moving away from
the vanishing point is selected. Finally, the selected
motion track and its detected traffic are categorized
as oncoming traffic. Fig. 2 shows the design of the
proposed method, and the following section provides
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Fig. 2. Design of proposed method.

more details about the steps used in the proposed
method.

1) Initialization Step

The initialization step involves two processes as
a preparatory action preceding detecting and tracking
incoming traffic. The first process in the initialization
step is defining the Rol. The sequence of I(z,y,t),
with the existence of traffic, is used for the Rol
definition process. Due to the optimum processing
time to obtain the target movement of traffic reason,
this study recommends down-sampling I(z,y,t) for
t € Vipss 2Vips, -+, T/Vps. At first, defining the Rol
process, the algorithm detects foreground objects using
the background subtraction method. The background
frame for background subtraction process is calculated
using (4).

IBG(I7yat) :med(l(zvy7t - T)v )
I(x7yvt)7"' ,I(%y,t‘FT)

where Ipg(z,y,t) is generated background, and r
is the range of sequential frame calculated using the
median. The median calculation is used to minimize
brightness fluctuation from sunlight intensity variation.
In this step, r is predefined as 150 frames based on
visual observation of detection quality. The predefined
value of 150 frames is keep the background updated
based on 150 frames (5 seconds for 30 fps and 7.5
seconds for 20 fps video) before and after the current
frame condition. In addition, the predefined value is
also used to remove any traffic movement that remains
static for less than 10 or 15 seconds. Then, the fore-
ground is calculated using (5).

IFO(xvyat) = |I(.’£,y,t) - IBG(xay,t)‘ (5)

where Iro(x,y,t) is detected foreground from back-
ground subtraction calculation. The detected fore-
ground still contains non-vehicle objects and noise
caused by road texture and shadow variations. Due to
noise reduction in the detected foreground, we used a
thresholding-based noise removal process. Iro(z,y,t)
values with a lower intensity than the threshold value
(th) are removed from Ipo(z,y,t). This study’s
threshold value selection is predefined for each video

4)



test material. The noise removal in this step is calcu-
lated using (6).

17 IFO(va/:t) > th

0, otherwise

]FO(m7y7t> = { (6)

where Irpo(x,y,t) is redefined after noise filtering
to avoid the complexity of notation. In addition, the
morphology process, including blurring and dilation,
is also applied to remove the noise.

The objective of defining Rol is to minimize the
unpredictability of the environment surrounding the
roadway. This study focuses on the primary region
where vehicle movement occurs. This study uses frame
difference to detect significantly moving foreground
objects to obtain the Rol. Frame difference is calcu-
lated using (7).

_IFO(Ivy’t+1)| (7N

Inro(z,y,t) = [Iro(x,y,t)

where Iy ro(z,y,t) is detected moving foreground
object. Then, Iy po(x,y,t) from all ¢ is summed up
into one frame that shows the number of regions where
moving foreground objects existed. In addition, thresh-
olding is also applied to remove regions with non-
vehicle movement. The process is calculated using (8).

1, thiow > Zthl IMFO(xayat)
> thhigh
0, otherwise

IROI(‘r) y) =

3
where Igor(z,y) represent the Rol. thio, and thpign,
are minimum and maximum thresholds to filter non-
vehicle movement. thjo,, and thp;gn are varied for
each video material and predefined based on visual
observation.

The second process in the initialization step is
the estimation of the vanishing point coordinate. The
vanishing point in this step is estimated from a single
I(x,y,t) with t is preselected manually by visual ob-
servation. This study recommends selecting t without
the existence of traffic to obtain a precise vanishing
point. In this process, Iy p(x,y) is I(x,y,t) for the
preselected ¢. In addition, Iy p(z,y) is also convolved
with a median filter with a size of 5 x 5 pixels to
reduce noise.

The vanishing point estimation is started by calcu-
lating two components of WOD: differential excitation
and orientation at each pixel location. Differential
excitation is calculated based on the difference between
center pixel intensity and the average intensity of all
neighbors pixel in a k x k kernel size. Differential
excitation is calculated using (9).

\/ pcenter G pcente'r
fwod (pcenter) =

0, otherwise

)>0

€))

in which,

G(pcenter) — arctan (pcenter pnezghbor) (10)
Pcenter
Where fwod (pcente'r' ) 5 Pcenters W? and
G (peenter) are differential excitation for peenters
the intensity of the center pixel, the average intensity
of all neighbors pixel, and the intensity difference,
respectively. This study predefined k = 25 as the size
of the kernel. &y oq(Peenter) is further processed by
thresholding to minimize the noise in the frame texture
features. This study defines 7" = 0.05 as thresholding
value. The normalized value of &y0d(Deenter) that is
larger than 7' is used to estimate the vanishing point.

This study uses the Gabor filter to estimate the
dominant orientation at each pixel location, as has been
used in [21]. Kernel of Gabor filter g that is cen-
tered at (z,y) for orientation ¢,, and radial frequency
w =27/ A is defined as seen in (11).

G (@) = €T A (e — ' /2)

(1)

where a = x cos p, + ysiny, and b = —xsinp, +
ycos ¢y,,. In this study, 0 = k/9, ¢ = 2.2, and \ =
km/10 are a constant, similar to the parameter setting
in [20]. ¢, is calculated using (12).

_(n—1)m
y = ————
No
where N, is a total number of orientations. Dominant

orientation for Iy p(x,y) for each peenter is calculated
using (13).

fcpn (pcenter) - IVP (pcenter) * gtpn (pcenter)

withn =1,2,--- N, (12)

13)

where f@n (Peenter) 1s the result of convolution be-
tween the video frame and kernel of the Gabor filter
and * denotes the convolution operator. I . (Pcenter) as
a convolution result, has a real part and an imaginary
part. These two parts are used to calculate Gabor
energy for each pixel in I .. (Deenter). Gabor energy

is calculated using (14).

Etpn (pcenter) -
\/Re(jgon (pcente’r‘))2 + Im(jgon (pcenter))2

where E,, (Peenter) 1s the magnitude of Gabor energy
at Peenter- Finally, orientation at each pixel location is
defined in (15).

(14)

Owod (pcenter) = Argmax% Etpn (pcenter) (15)

where 0.0d(Deenter) 18 Deenter Orientation.

The vanishing point is estimated based on the line-
voting scheme (LVS) result. Firstly, LVS sets accu-
mulator space with the same size as Iy p(x,y) with
an initial zero value. Secondly, &, od(Peenter) and its
counterpart 0y,04(Pcenter) act as a voter that draws rays
in the accumulator space. The corresponding accumu-
lator space is increased by one if the rays lie over it.
Finally, the maximum value in the accumulator space
is defined as the vanishing point coordinate (Zyp, Yup)-
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Fig. 3. Result of initialization of the proposed method: (a) Site 1, (b) Site 2, (c) Site 3, (d)Site 4, € Site 5, (f) Site 6, (g) Site 7, (h) Site
8, (i) Site 9, (j) Site 10, (k) Site 11, (1) Site 12.



2) Object Detection using Background Subtraction

The second step uses the defined Rol from the
initialization step to mask the I(z,y,t). The masking
process conducted in (16).

Imasked(x7y7t) _ {I(m?yvt)a IROI(-IH.Q) =1
0, otherwise
(16)

where I,qsked(T,y,t) is the masking result. Then,
a similar process of background subtraction as
used in (4), (5), (6) is applied to all frames in
Tnasked(%,y,t). Iro(x,y,t) is obtained from the pro-
cess.

3) Object Tracking using Kalman Filter

Iro(z,y,t) from the second step is further pro-
cessed to track its movement. The process is to as-
sociate detected Ipo(x,y,t) based on its movement
from frame to frame. Since this study uses video from
a stationary camera, the Kalman filter [22] can be used
to predict object tracks in each frame and determine
the likelihood of each detection to each track. Track
maintenance is also applied to update the status of any
new or disappearing objects in the video frame.

The motion estimation process in this step mainly
follows the Matlab documentation [23]. The config-
uration is set to detect the minimum blob area of
100 pixels to handle this study’s low resolution of
oncoming traffic. The motion estimation step generates
the coordinates of the detected objects in each frame.
However, it is possible for the system also to capture
outgoing traffic approaching the vanishing point, so the
results are filtered to only include detections moving
further away from the vanishing point.

The distance of the vanishing point to the de-
tected object is calculated using Euclidean distance.
Euclidean distance is calculated in (17).

A(t) =\ @ons (1) = 70p)2 + (i (1) = 20p)? (A7)

where d(t) and xp;(t), yosj(t) are Euclidean distance
of the object and coordinate of the detected object
at frame ¢, respectively. Filtering oncoming traffic is
conducted in (18).

1, d(t)>d(t—1)

. (18)
0, otherwise

incoming(t) = {
where incoming(t) is label for oncoming traffic.

IITI. RESULT

This section shows the result of the initialization
step and the detection and tracking of oncoming traffic.

A. Initialization Step

Fig. 3 shows the result of the initialization step. The
columns represent the result of the grayscale image
Iy p(z,y), the grayscale image masked with defined
Rol and overlaid vanishing point, respectively. The

rows represent each video test material. As shown in
the second column of Fig. 3, the defined Rol covers the
main road lane where most traffic activity occurs. The
defined Rol is also affected by perspective projection,
which causes one side of the Rol to appear smaller as
the road lane gets further away. Although the shape of
the Rol may be irregular in some cases, the objective
of excluding the movement of non-vehicle objects such
as shrubs, grass, trees, and flags is minimized. It can
be seen in the second column of Fig. 3: (f-1), where
the road is bordered by grass. The third column of
Fig. 3 shows the estimated vanishing point from the
initialization step as a red crosshair. For comparison,
the ground truth of the vanishing point is shown as
a green crosshair. In this study, the ground truth of
the vanishing point was manually marked using visual
fixation.

The qualitative comparison shows that the estimated
vanishing point from the initialization step can almost
match the ground truth in a straight road, such as in
Fig. 3: (a-e). It is because the LVS mainly defines
the vanishing point based on the significant orientation
of straight edge object that exists in the Iy p(z,y).
The existence of road lines, road fences, pavement,
and aerial utility cables influences the accuracy of the
estimated vanishing point. In the case of Fig. 3: (f-k),
the curved shape of the roadway shifts the estimated
vanishing point from the ground truth. In this condi-
tion, the curved edge object cannot get a significant
vote in the LVS. Observation of the experiment result
also shows that the straight edge of bridge and other
visible roadways also shifts the vanishing point in the
curved road. In addition, Fig. 3: (1) shows how the
vanishing point is estimated in an S-curved road. In this
case, the edge of the curved road is not visible. Fig. 4
highlights how these objects (highlighted in red ovals)
influence the voting process of rays in accumulator
space.

As a quantitative comparison, the estimation error
of the vanishing point is calculated using normalized
Euclidean distance [24]. The estimation error is defined
in (19).

5= \/(xvp B xgt)Q + (yvp - ygt)2

where ¢ and (Z,p, Yup) are estimation error and ground
truth coordinates, respectively. § near O represents a
close estimation of the vanishing point to the ground
truth; otherwise, 0 near 1 represents the inaccuracy of
estimation.

19)

Table 1 tabulates § for each video test material
with a variation of N, € {9, 12, 18,36, 180}. Variation
of N, influences how accurate the estimation of the
vanishing point based on the orientation in the Gabor
filter calculation. The estimation error is generally rela-
tively low, with a maximum value of 0.1635. Increasing
N, means an increased resolution of ¢, precision.



Table 1. Quantitative Comparison of Vanishing Point Estimation Error () for Variation of N,

0
Site 9 12 18 36 180 5
1 0.0134 | 0.0204 | 0.0051 | 0.0040 | 0.0080 | 0.0111
2 0.0947 | 0.0501 | 0.0053 | 0.0027 | 0.0171 | 0.0369
3 0.1026 | 0.0161 | 0.0025 | 0.0040 | 0.0149 | 0.0288
4 0.0282 | 0.0188 | 0.0166 | 0.0087 | 0.0059 | 0.0151
5 0.0538 | 0.0074 | 0.0144 | 0.0099 | 0.0149 | 0.0208
6 0.0328 | 0.0301 | 0.0428 | 0.0174 | 0.0251 | 0.0312
7 0.0364 | 0.0163 | 0.0365 | 0.0352 | 0.0115 | 0.0242
8 0.0221 | 0.0148 | 0.0278 | 0.0154 | 0.0180 | 0.0195
9 0.0081 | 0.0199 | 0.0222 | 0.0246 | 0.0290 | 0.0205
10 | 0.1635 | 0.0278 | 0.0270 | 0.0283 | 0.0398 | 0.0587
11 0.0390 | 0.0946 | 0.0271 | 0.0375 | 0.0444 | 0.0500
12 | 0.0241 | 0.0067 | 0.0724 | 0.0132 | 0.0150 | 0.0259

(b)

Fig. 4. Sample detected edge (first row) and accumulator space (second row) that influence the estimated vanishing point: (a) Site 6; (b)

Site 7; (c) Site 11; (d) Site 12.

(b)

(d)

Fig. 5. Sample detection of Iro(z,y,t) (first row) and final result of oncoming traffic detection (second row): (a) Site 2; (b) Site 4; (c)

Site 7; (d) Site 12.

Thus, the error estimation can be lowered. However,
the processing time for high-resolution orientation is
also increased.

B. Detection and Tracking of Oncoming Traffic

Fig. 5 shows a sample result of the traffic detection
from the second step. The first row shows the detection
of Irp(x,y,t) inside the Rol. To achieve the study
purpose, a small object that appears inside the Rol is
categorized as the candidate of the oncoming traffic.
Then, the Kalman filter further processes the detection
to calculate motion estimation. The second row of
Fig. 5 shows the detected object that is getting distant
from the vanishing point. These objects are defined as
the final result of the proposed method.

IV. DISCUSSION

The proposed method’s performance is compared to
the Regions with Convolutional Neural Networks (R-
CNN) [25] object detectors. The evaluation is based
on how early the method can detect oncoming traffic.

The R-CNN uses a CNN that consists of an image
input layer, 2D convolution layer, rectified linear unit
(ReLU) layer, max pooling layer, fully connected layer,
softmax layer, and classification output layer for the
neural network. The R-CNN uses a CIFAR-10 data
set, which contains 50,000 training images used to
train a CNN. The training images have ten categories,
including automobiles relevant to this study. The train-
ing is conducted using stochastic gradient descent with



momentum (SGDM) with an initial learning rate of
0.001. The initial learning rate is reduced every eight
epochs for 40 epochs of training.

After confirming that the R-CNN works well with
the CIFAR-10 data set, the network is also trained
using a self-generated data set. This data set is created
based on video frames from the first and second
cameras, and each image is labeled manually based
on visual observations from the frames. The training
set consists of 40 images of vehicles, which represent
oncoming traffic and are varied in size, position in
the roadway, and grayscale intensity. The training is
conducted using the same SGDM algorithm with an
initial learning rate of 0.001 for 100 epochs. The
implementation of the R-CNN in this study follows the
Matlab documentation [26] with some modifications
to fit the conditions of the study. The benchmarking
process begins by selecting sequential frames as the
objects of evaluation. These frames are selected man-
ually from each video test material, starting at £g4q¢-

Table 2. Benchmarking Results in the Detection of Oncoming Traffic

t etect
Site | tstart | tenq | Proposed R-CNN
Method

1 870 1070 880 890
2 360 660 370 437
3 120 420 139 202
4 4200 4500 4211 4276
5 1110 1410 1121 1321
6 600 900 644 672
7 1800 2100 1810 1817
8 1080 1280 1090 1120
9 3780 4080 3792 *

10 1080 1380 1094 1132
11 4500 4800 4538 4545
12 690 990 714 695

*Until t.,q4, R-CNN cannot detect the target vehicle.

Table 2 summarizes the detection results for the
benchmarking process. Overall, the proposed method
has earlier detection of oncoming traffic than the R-
CNN method. For this study’s twelve video test mate-
rials, the proposed method requires an average of 17.75
frames to detect the target vehicle. In contrast, the R-
CNN requires an average of 63.36 frames to detect the
target vehicle. For Site 9, the R-CNN method cannot
detect the target vehicle because it is too small to be
detected until ¢.,,4. This result shows that the R-CNN
requires a larger vehicle image to recognize it as a
vehicle. For example, in Site 1, the vehicle is detected
if it is at least 96 x 200 pixels in size, and in Site 8, it
is detected if it is at least 141 x 176 pixels in size. For
Site 12, the R-CNN method has earlier detection than
the proposed method because the detected vanishing
point from the proposed method is located in the center
of the roadway due to its S-curved nature. As shown in
Fig. 3: (1), the oncoming car must pass the vanishing
point before it can be detected as incoming traffic.

V. CONCLUSION AND FUTURE WORK

This study has successfully achieved the objective
of proposing a method based on a vanishing point
reference. The proposed method shows improved per-
formance in detecting and tracking distant oncoming
traffic. The result demonstrated that the Rol could
be defined, and the vanishing point can be esti-
mated—furthermore, the proposed method results in
earlier detection than the R-CNN method. The results
also suggest that the proposed method’s performance
depends on the definition of the Rol and the number of
pixel orientations used in calculating the Gabor filter,
both of which affect the accuracy of the vanishing
point.

In the future, it will be challenging to experiment
with the proposed algorithm in different environments,
such as Indonesian traffic. The different environments
will have different traffic and local conditions that
must be considered. In addition, it is also interesting
to experiment with more than one incoming/outgoing
traffic. Therefore, the proposed algorithm must also be
tuned in this new environment.
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