
JURNAL INFOTEL
Informatics - Telecommunication - Electronics

Website: http://ejournal.st3telkom.ac.id/index.php/infotel
ISSN: 2085-3688; e-ISSN: 2460-0997

Genetic algorithm for finding shortest path of mobile robot
in various static environments

Dyah Lestari1,*, Siti Sendari2, Ilham Ari Elbaith Zaeni3
1,2,3Universitas Negeri Malang

1Jl. Semarang, No. 5, Malang 65145, Indonesia
*Corresponding email: dyah.lestari.ft@um.ac.id

Received 6 May 2023, Revised 27 August 2023, Accepted 19 September 2023

Abstract — In conducting their work in the industry quickly, precisely, and safely, mobile robots must be able to determine
the position and direction of movement in their work environment. Several algorithms have been developed to solve maze
rooms, however, when the room is huge with several obstacles that could be replaced in other parts of the room, determining
the path for a mobile robot will be difficult. This can be done by mapping the work environment and determining the position
of the robot so that the robot has good path planning to get the optimal path. In this research, a Genetic Algorithm (GA)
will be used to determine the fastest route that a robot may take when moving from one location to another. The method
used is to design a mobile robot work environment, design genetic algorithm steps, create software for simulation, test the
algorithm in 6 variations of the work environment, and analyze the test results. The genetic algorithm can determine the
shortest path with 93 % completeness among the 6 possible combinations of the start point, target point, and position of
obstacles. The proposed GA, it can be argued, can be used to locate the shortest path in a warehouse with different start
and end points.
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I. INTRODUCTION

A mobile robot is a type of robot used to help
smooth work in the industry, such as receiving, picking,
sorting, and packing [1]. To solve the task of carrying
goods quickly, precisely, and safely, a mobile robot
must be able to identify the environment’s map, plan
its paths, dynamically respond to its surroundings, and
avoid obstacles autonomously [2], [3]. Path planning is
the process of choosing the quickest route for mobile
robots to take from their starting point to their desired
location. Path planning becomes a key challenge for
robots when faced with various static and moving
obstacles that can be placed anywhere in a large
warehouse. For many applications, including naviga-
tion systems, it is essential to have algorithms for
determining the shortest distance between two points.
By finding the shortest path, mobile robots can save
time and use as little energy as possible. Moreover, in
a dynamic environment, the robot must continuously
detect changes in the position of obstacles and apply its
algorithms to avoid them and find the shortest path to
the target point. As described in [4], four performance

criteria can be used to assess the performance of these
algorithms. These criteria are completeness, optimum,
time complexity, and space complexity. The ability of
the algorithm to identify the entire route connecting the
start and the destination node is known as complete-
ness. Meanwhile, optimum performance is defined as
finding the best course with the least effort or expense.
The amount of required computation to discover the
best path is called time complexity. When determining
the best path, space complexity refers to the overall
amount of computational memory being used.

Path planning can be either local planning [5] or
global planning [6]. While global planning is based
on prior knowledge of the workplace, local planning
is used in an unknowable environment. The shortest
distance between the start and target points is ideal for
both planning scenarios. The optimal path’s definition,
though, may change circumstances. For instance, the
amount of required time to compute the best path is im-
portant if the tasks are sequentially given to the robots.
To achieve the optimal path, it will be challenging to
guarantee task continuity when the computation time
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is too long. Therefore, researchers should adopt the
appropriate algorithm for obtaining the desired optimal
criterion.

The Breadth-First Search (BFS) [7], Depth-First
Search (DFS), Best-First Search, and Dijkstra algo-
rithms [8] are the most popular classical methods for
path planning, enabling identification of the shortest
path between nodes in a graph and grid-based struc-
tures or known as single-source shortest path (SSSP)
problem [9]. Greedy BFS [10] and A* algorithm [11],
[12] are two heuristic, goal-oriented search algorithms
that are faster than the aforementioned algorithm. How-
ever, they can only come up with solutions for situa-
tions involving single-source, single-target pathfinding.
Sampling-based techniques, such as the rapidly explor-
ing random tree (RRT) algorithm [13], are another
group of popular strategies, particularly in robotics.
RRT-based techniques work well in continuous spaces
but are less effective than Dijkstra or A* on grids or
in challenging situations like mazes [14]. Additionally,
classical search algorithms can give the best robot
path. Still, they might not be appropriate for larger
and more complex environments and demand a lot of
processing time and memory space. Besides, heuristic
search algorithms such as Greedy-BFS and RRT can
also give path solutions, but they may not always come
up with the best answers.

To solve the path planning problems faced when
using classical and heuristic algorithms, metaheuristic
optimization algorithms are employed. Particle Swarm
Optimization (PSO), for instance, is used in conjunc-
tion with other algorithms to solve multi-objective
path planning issues for mobile robots in radioactive
environments [15] or to get smooth path planning [16]–
[18]. A simulated Annealing algorithm was used by
[19] for dynamic path planning. The shortest path
length and the fewest number of turn times were
obtained using the Ant Colony Optimization method
(ACO) [20]–[22]. However, the main issues with these
methods are their high computing complexity and the
possibility of them being trapped at local optima.

In addition, the Genetic Algorithm (GA) approach
appears to be a promising method to address these is-
sues, as it is a multidimensional search technique capa-
ble of simultaneously handling multiple solutions. One
metaheuristic algorithm that draws inspiration from
biological evolution is GA. Based on Darwin’s theory
of the survival of the fittest in nature, GA is a well-
recognized evolutionary algorithm. J.H. Holland first
proposed GA in 1992. Chromosome representation,
fitness selection, and biologically inspired operators
like crossover, mutation, and selection make up the
fundamental components of GA.

According to a study by Lamini et al. [23], an im-
proved crossover operator can be used with genetic al-
gorithms in a static environment to solve path-planning

issues. The number of turns in the ideal path and the
average iteration numbers are decreased in comparison
to other methods when applied to 4 different maps of
varying sizes. The recommended crossover operator
delays early convergence and generates viable paths
with higher fitness values than its parent paths, causing
the algorithm to converge more quickly.

A genetic algorithm is also used by De Camargo et
al. [24] to attain more than one optimal path. Using
a 20 × 20 grid environment, there are four various
paths generated by the algorithm. The research findings
indicate that a low number of individuals in a genetic
algorithm result in a non-converge solution to the
problem or it may take many generations to converge.
Conversely, larger populations are more likely to pro-
mote convergence, although it should be noted that
convergence is slower with larger populations. Then,
genetic algorithms can learn and produce suitable paths
without any past understanding of the environment.

Elhoseny et al. [25] combines Bezier curve-based
approach and a modified genetic algorithm (MGA)
for path planning in several fields. Using MGA, the
best smooth path that minimizes the overall distance
between the start and finish locations is found by
looking for the points that will serve as the control
points of the Bezier curve. This research uses two
scenarios, namely a 100 × 100 environment and a
200 × 200 environment with some obstacles and six
benchmark maps. This approach provides the shortest
path length based on the research’s findings.

Four new domain knowledge-based operators were
added to the genetic algorithm by Sarkar et al. [26]
to overcome the path planning issue with single inde-
pendent targets. The method was deployed on several
environments, namely six mid-scale environments with
15 × 15 grids and large-scale environments with 50
× 50 grids. According to the experimental findings,
the method delivered superior outcomes in terms of
consistently determining the shortest path across all
scenarios.

However, researchers [23]–[26] applied GA to spe-
cific maps of environments with certain sizes and
several obstacles permanently placed so that if the
designed GA is applied in different work environments,
it will not necessarily get the same results. This study
aimed to simulate the proposed GA in a warehouse-
like environment with randomly placed obstacles. GA
is implemented to measure two performance criteria,
namely completeness and optimum. However, that
study has several weaknesses, such as the environment
being in the form of 5 × 10 grids, the number of
obstacles being two, which can be placed anywhere
in the environment, and the maximum population size
being 100.

In this paper, the related research is presented
initially, followed by the proposed algorithm’s design,
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Fig. 1. Research stages.

the experiment’s findings, and discussion. The last part
consists of a conclusion and recommendation related
to the research results.

II. RESEARCH METHOD

The research stage is illustrated in Fig. 1. The re-
search starts with designing the robot working environ-
ment, designing the gene representation, and designing
the GA steps. After all the designs were completed,
software was created to simulate the GA with Visual
Studio. After the software is completed, experiments
are carried out and the results obtained from the
experiments are analyzed.

With each path having a single source and a sin-
gle target, we have developed GA-based solutions
to the path planning issue for robots. In terms of
path planning, the advantages of GA are faster and
more efficient compared to the classical method, can
provide a list of reasonable solutions, and provides
optimization on large-scale spaces. The GA algorithm
starts by initializing the population, calculating fitness,
implementing genetic operators consisting of tourna-
ment selection, crossover, and mutation, and applying
the elitist strategy.

A. Representation of Environment

In this work, the robot’s environment has been
divided into several orderly numbered grids of the
same size and shape using a grid-based decomposition
technique. The environment is modeled as a rectangle
with 50 points consisting of 5 rows and 10 columns.
The robot will travel between these points to reach
the target point. Fig. 2 shows the modeling of a
robot’s work environment, which has point identity
information (I) in the robot’s work which has 50 points
(J = 50), 5 rows (M = 0 - 4), and 10 columns (N = 0
- 9). Obstacle (H) placed at a certain point will change
its value: 0 for a free point and 1 for an obstacle.

Fig. 3 represents connections of a point in the work
area. From one location to another, the robot can move
by paying attention to the connection information (K)
at the point where the robot is located. Each point (I)
has four connections, consisting of:

Fig. 2. Robot’s environment.

• Connection to the top point (K1)
• Connection to the right point (K2)
• Connection to the bottom point (K3)
• Connection to the left (K4)

If the present point becomes an obstacle (H = 1),
then the conditions for the four connections are inactive
(K1 = 0, K2 = 0, K3 = 0, and K4 = 0). However,
if there are no obstacles at a point (H = 0), then the
connection conditions are active (K1 = 1, K2 = 1, K3
= 1, and K4 = 1). As an exception, the connection
value will be assigned a value of 0 at a point on the
boundaries of the work environment.

Fig. 3. Point connections (a) a free point and (b) an obstacle.

B. Genetic Representations

A chromosome represents a potential solution to
the path planning problem. Row position (M ), column
position (N ), obstacle (H), top connection (K1), right
connection (K2), bottom connection (K3), and left
connection (K4) make up a chromosome or a path.
The matrix representation for each point is expressed
by (1).

C = [M N H K1 K2 K3 K4] (1)

Fig. 4. Example of robot environment with two obstacles and
possible connections for each point.

Fig. 4 shows all the points in the robot’s environ-
ment and their possible connections. There are also two
examples of obstacles placed at point 25 and point 39.
In accordance with (1), the chromosome representation
for point 4, which is on the edge and a free point, is
[0 3 1 0 1 1 1], the chromosome representation for point
24 which is a free point, namely [2 3 1 1 0 1 1], while
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Fig. 5. An example of single point crossover.

the chromosome representation for point 25 which is
an obstacle is [2 4 0 0 0 0 0].

C. Initialization of Population

In this investigation, the first population’s individ-
uals are generated at random. A generation is deter-
mined by setting the following parameters:

• Chromosomes in the form of a 50 × 7 matrix,
where row indices 0 to 49 represent point identity
information (1 to 50) and column indices 0 to 6
contain information of the chromosome.

• The probability of the number of obstacles (Ph)
is 0.04.

• Connections to chromosomes are determined by
rules of the connection has a value of 0 or is
not active if a point become an obstacle or at a
point on the boundaries of the work environment
and the connection will be generated with a
connection probability (Pk) 0.25 if a point is free.

D. Fitness Function

Finding the best path between a start node and a
target node is the aim of the path planning problem.
A population’s chromosomal quality is assessed using
the fitness function. Since distance has been used as the
optimization criterion, it is necessary to minimize the
fitness function (f ), as stated in (2) and (3). The total
distances between each node along a path are used to
define the fitness function value.

f =

n∑
i=1

δ(pi, pi + 1) (2)

δ(pi, pi+1) =
√
(x(i+1) − xi)2 + (y(i+1) − yi)2 (3)

In which f represents the fitness function, n repre-
sents the chromosome length, δ represents the distance

between two points, pi represents the ith gene of the
chromosome, xi and yi represent the robot’s current
horizontal and vertical locations, while x(i+1) and
y(i+1) represent robot’s next horizontal and vertical
locations.

E. Genetic Operators

1) Tournament selection
The GA’s primary principle is that the best chro-

mosomal genes should survive and be passed down
to future generations. At this point, to choose the
best chromosomes, a selection process must be carried
out. There are three steps in the selection procedure.
The objective function values of each chromosome
are discovered in the first step. The second stage
involves assigning chromosomal fitness ratings based
on the values of their objective functions. The rank-
based fitness assignment method was employed in this
study in place of the proportional assignment method.
As a result, the population is kept from having a
few superior chromosomes become dominant. In the
final step, chromosomes are chosen based on fitness
scores and placed in a mating pool to create new
chromosomes.

2) Crossover
Two-parent chromosomes exchange information

with one another during the crossover process to
produce two offspring for the following generation.
In this study, a single-point crossover was used, with
the single point selected at random from the parent
chromosome with the shorter path. Fig. 5 shows an
example of the crossover process of two selected parent
chromosomes.

3) Mutation
A mutation process is required to produce a new

gene that is not on a chromosome. The gene on the
desired chromosome is the connection from the active
point. A gene on a chromosome has a probability of
going through a mutation process. The new gene will

Jurnal Infotel, Vol. 15, No. 3, August 2023
https://doi.org/10.20895/infotel.v15i3.961 283



ISSN: 2085-3688; e-ISSN: 2460-0997
Genetic algorithm for finding shortest path of mobile robot in various static environments

Fig. 6. An example of a mutation process.

ensure that it is not at a location with obstacles. The
mutation process will change the value of the selected
gene, when the gene has a value of 0 it will be changed
to a value of 1, and vice versa. The result of this
mutation process will produce new chromosomes in the
population. Fig. 6 shows an example of a chromosome
mutation process.

F. Elitist Strategy

In order to prevent the best chromosomes from the
previous generation from being lost if they are not
picked or if crossover or mutation modifies them, the
elitist technique seeks to conserve them in the current
generation.

G. Termination Condition

Although there isn’t a single finishing point for
GA, the process will end when there has been 400
generations total.

III. RESULTS

This section discusses parameter and experimental
settings.

A. Parameter Setting

Aside from constructing the algorithm, parameter
adjustment is also essential. Investigations were done
on the effects of population size and the number of
iterations on the path length. The shortest path between
the start and target points in the environment is used to
determine the ideal parameter. In this experiment, the
crossover, mutation, and elitist rates were 0.6, 0.39,
and 0.01, respectively.

1) Population size
The population size or number of solutions must

be sufficient to allow for the exploration of the search
space. This section examined the impact of popula-
tion size on the length of the proposed model’s path
when there were 40 iterations and 40, 60, 80, or 100
populations. Fig. 7 shows the results. As illustrated in

Fig. 7. Effect of population size on the proposed model’s path length.

Fig. 8. Effect of iterations on the path length of the proposed model.

the figure, as the population increases, the path length
will get better and converge to the optimal or nearly
optimal solutions more quickly. For the experiment, we
use 100 as the population size.

2) Number of iterations
The suggested model’s performance is also im-

pacted by the number of iterations. This section exam-
ined the impact of this parameter on the effectiveness
of the suggested model. In this experiment, the pop-
ulation size was 100, while the number of iterations
varied from 20, 40, 60, 80, and 100. Fig. 8 presents a
summary of the experiment’s findings. From the figure,
the best number of iterations is 40 since it converges
faster than other number of iterations.

B. Experimental Settings

We build software to simulate the proposed algo-
rithm using Microsoft Studio. By setting up random
obstacle placements in the field with various start
and target places, we created six scenarios to test the
effectiveness of our suggested methods. We conducted
the examination ten times for each scenario, reporting
the mean findings. We used 100 population size, 40
iterations, and the maximum generation was 400. Fig. 9
shows an illustration of the scenarios. The starting
point is marked with a black circle, the target point is
marked with a white circle, and obstacles are marked
with black squares. Aside from the start point and tar-
get point distances varying from close to far apart, two
environmental obstacles’ locations were also altered.
The result of the experiments is shown in Table 1.

IV. DISCUSSION

In terms of the optimum path length, average path
length, average number of generations, percentage of
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Fig. 9. Six scenarios used in the experiments with two obstacles and different start and target point (a) Scenario1, (b) Scenario2, (c) Scenario
3, (d) Scenario 4, (e) Scenario 5, and (f) Scenario 6.

Table 1. Result of Experiments for Scenario 1 - 6
Scenario Best Path Average Path Average Number of Percentage of Number of Path

Length Length Generations Completeness Variations
1 23.948 23.948 14.1 100 % 5
2 29.796 29.827 16.6 100 % 2
3 30.429 30.829 53.5 100 % 4
4 35.742 35.771 53.6 100 % 3
5 43.203 43.449 87.9 80 % 5
6 61.52 64.025 160.7 80 % 8

Fig. 10. The shortest path generated from experiments (a) Scenario1, (b) Scenario2, (c) Scenario 3, (d) Scenario 4, (e) Scenario 5, and (f)
Scenario 6.

completeness, and number of path modifications, Ta-
ble 1 shows the results of testing from scenarios 1
through 6. For scenario 1, out of 10 trials, the path
lengths obtained are identical even though the resulting
paths vary. The percentage of completeness is 100 %,
with an average number of generations of 16.6. For
scenarios 2, 3, and 4, out of 10 trials, there are 2 to
3 path length variations and two path variations with
a 100 % success rate. For scenarios 5 and 6, out of
10 trials, there were eight successful trials with an
average resulting path length of 43.449 and 64.025,
which were not too far from the obtained best path
length. For scenarios 5 and 6, the average number
of generations needed for convergence is relatively
high—87.9 and 160.7. Additionally, there were two
failed attempts, indicating that the robot was unable to
reach the point target. The results of this study follow
the results of studies [23], [25], and [26], which state

that GA can provide the shortest path length in various
tested environments. Fig. 10 shows one of the shortest
paths that has been obtained from the experiments in
the six scenarios. The shortest path for each scenario
is marked with a dashed black line from the starting
point to the target point.

Table 1 also shows that the farther path the robot
must take results in a more significant number of
generations, which affects the required time to reach
convergence. However, because the population initial-
ization in GA is random, the required time to reach
convergence in each trial is also different, with some of
them requiring many generations and others requiring
a small number of generations.

V. CONCLUSION

This paper proposed GA as the algorithm for finding
the shortest path between the start point and the target
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point with a predetermined amount of obstacles in var-
ious static environments. The result of the experiments
shows that the proposed GA can find the shortest path
within a certain number of generations in multiple
environments. The number of generations increases
following the distance that the robot must travel, which
impacts the period it takes to attain convergence. Since
the current work only considered static obstacles, the
proposed GA should be assessed for path planning in
a dynamic environment with moving obstacles.
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