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Abstract — Lack of clean water has become a problem in the world, and it is estimated that by 2025, there will be 2.8
billion people who will experience a shortage of clean water. The high demand for clean water and the limited water sources
with proper potency is one of the main reasons for the need for a device capable of measuring the potability level of water
that is flexible to carry and does not require high costs in the manufacturing process. In this paper, the design of machine
learning-based potability devices with recursive feature elimination with cross-validation (RFECV) is carried out as a guide
in making the design of a water potability detection system, and the results obtained from RFECV with the Random Forest
(RF) algorithm have a higher accuracy value. 15.71 % better than the RF model, 6.85 % better than the support vector
machine (SVM) model, and 8.57 % better than the artificial neural network (ANN) model trained without RFECV. The water
potability prediction system’s design selection is based on feature elimination results in the RFECV process. It is based on
a literature review on device selection. The proposed water potability detection system consists of ESP32 as the primary
computing device, an electrochemical spectroscopy–based Al/PET sensor to detect sulfate values with a sensitivity of 0.874
Ω/ppm, PH4502C as a pH measuring instrument with an accuracy of up to 98.10 %, WD-35802-49 electrode. as a device
for measuring hardness in water with a measurement range of 0.4−–40,000 ppm, a total dissolved solids sensor to determine
the solids content in water with an accuracy of up to 97.80 %, as well as a carbon-based sensor for measuring chloramines
with a reading capacity of 186 nA/ppm.
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I. INTRODUCTION

Clean water is a fundamental need for human daily
life. Clean water resources are essential in various fields
of health, economy, animal husbandry, and agriculture,
so the quality of clean water resources is often used as
a benchmark for a country. Based on data taken from
the World Health Organization (WHO), there are 1.2
billion people in the world who still do not have access
to sanitation services, and it is estimated that by 2025
there will be 2.8 billion people who will live without
water in 48 countries [1].

The level of potability of clean water refers to the
suitability level of water that humans can consume. The
potability of drinking water has an important role in
preventing disease and epidemics. An inspection process
is necessary to ensure the quality of clean water. This is

done to ensure that no hazardous materials are entering
the body, such as arsenic material, which can harm
reproductive health [2], harmful bacteria detected in
water with non-standard pH [3], as well as digestive
diseases and skin diseases from material chlorine and
low content of low dissolved oxygen [4]. Therefore, a
measurement of the level of potability of water needs
to be done to ensure that the water consumed does not
contain harmful contamination and is safe for the body.

Several studies have been conducted to measure
the level of potability using odor sensors and microbi-
ology instruments to determine the level of toxicity
in cyanobacteria and potability level measurements
using the CO2 sensor on the PIC32 [5], the use of
Random Forest (RF) for measuring potability using
the parameters pH, Hardness, Solids, Chloramines,
Sulfate, Conductivity, Organic Carbon, Trihalomethanes
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and Turbidity [6], water quality monitoring system
on ARM Cortex-A53 based on IoT [7], water quality
control monitoring system [8], The potentiality level
measurement approach uses machine learning methods
such as RF, support vector machines (SVM), and
artificial neural networks (ANN) which have been
carried out with successive accuracies of 0.70, 0.58,
and 0.56 [9], [10].

This study aims to build a design of a device capable
of predicting the potability of water using a machine
learning approach on low-cost microcontrollers using
the recursive feature elimination with cross-validation
(RFECV) method as a feature elimination method to
increase the cost efficiency of the design as well as a
method to increase the effectiveness of the water potabil-
ity detection system. Water quality and potability levels
can be determined through predictions from the readings
of several sensors to read several parameters in water,
namely turbidity, solids, pH, conductivity, and total
organic carbon that has gone through RFECV. Using the
RFECV algorithm in selecting the design of the water
potability level detection system, the results obtained
in selecting water potability measurement instruments
will be more accurate, effective, and efficient, and it is
expected to be a solution to clean water problems in
the future.

II. RESEARCH METHOD

The potability instrument is a device used to deter-
mine the potability of water obtained through sensor
readings to obtain information on parameters that
determine water quality. Potability is a source of water
that is safe to drink and does not contain harmful
contaminants that are harmful to the body. In assessing
the potability of water, several parameters are identified
so that these parameters meet clean water quality
standards. These standards are created by environmental
and health organizations such as the WHO and the
Environmental Protection Agency (EPA).

Table 1. Water Quality Standards by WHO and EPA
Parameter Units WHO EPA

pH pH 6.5-8.5 6.5-8.5
Total Dissolved Solids mg/L 500 - 1000 500-1000
Turbidity NTU 5 4
Conductivity µS/cm 400 300
Total Organic Carbon mg/L - 0-2
Chloramines mg/L 5 4
Sulfate mg/L 250 500
Trihalomethanes mg/L 0.1 0.1
Hardness mg/L 300 120-170

RFECV has an important role in reducing the number
of sensors used, as shown in Fig 1. with i representing
the number of sensors and ni represent the sensor at
each index. In addition to impacting the accuracy of the
resulting detection process, the RFECV method also
has an important role in reducing the amount of power
used, which increases the efficiency of device power
usage, as represented in Fig. 1.

Fig. 1. System architectures.

A comparison of the performance of the proposed
model was carried out against models that had been
done previously using the same dataset based on
evaluation metrics to determine the performance of
the proposed model, as shown in Fig. 2. Through this
comparison; it can be seen whether the use of RFEV
has advantages over the models that have been done
and what causes the models that have been made to
have higher performance results than previous models.

Fig. 2. System architectures.

A. Dataset

The data used in this panel is data sourced from
Kaggle [11], with a total of 3276 data samples. The
data consists of 9 parameters shown in Table 1. The
data is the result of synthesis data used to measure
water potability. The value of the classification of water
potability is divided into two binary parts, namely
potable as a value of one (1) and not potable as a
value of zero (0), referring to water quality standards
in Table 1 with EPA quality standards.

The use of synthetic data in the machine learning
training process has been carried out in various domains
to prevent dataset imbalance and the presence of bias
that tends to appear in real-world datasets [12], The use
of synthetic datasets as primary data for the training
process has reliability in predicting data actually with
the impact of an insignificant decrease in accuracy and
a low deviation size [13], [14].

Fig. 3 shows a flowchart of the design determination
process, which begins with the pre-processing stage
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Fig. 3. Data pipeline diagram.

by carrying out data imputation and standardization
before entering the training stage. Data imputation is
done to fill in the blank data to increase the accuracy
and performance of the data [15]. The data imputation
process is done by filling in the empty data with the
average value of each data feature. After the data
imputation process is done, the standardization process
is done.

B. Data Standardization

Data standardization is carried out to avoid overscal-
ing the input data features and ensure each feature is
on the same scale. The data standardization process is
carried out by calculating the mean-X̄ and standard
deviation s values of each feature using (1) and (2); after
the mean and standard deviation values are obtained,
the z-score value z can be calculated using (3).

X̄ =
1

n

n∑
i=1

Xi (1)

S =

√∑n
i=1

(
Xi − X̄

)2
n− 1

(2)

z =
Xi − X̄

s
(3)

C. RFECV

RFECV is an algorithm used to determine the most
optimal features from the dataset to get the highest
accuracy [16].The use of RFECV is carried out by
eliminating features that are not needed, thereby speed-
ing up computation time and saving the power required
to make predictions [17]. RFECV is done by conducting
training from a dataset using a predetermined model.
Random forest (RF) is the basic RFECV model because
of RF’s high accuracy on small datasets rather than
neural networks [18]. The RF training process begins
by calculating the Gini impurity, Ginit,j valueof each
decision tree on randomly selected features t from a
subset of the dataset to determine which features will
be used as root nodes and leaf nodes by calculating
the probability of each categorical value Pt,j For each
feature input to the target feature j from total unique
categorical values in the target class K, the value of

Pt,j It obtained by calculating the total number of each
categorical value in the target class n(t, j) from given
categorical feature values in class i and the total number
of all categorical target values in the i− index Ni is
shown in (4) and (5).

Pt,j =
nt,j

Ni
(4)

Ginit,j = 1−
K∑
j=1

P 2
t,j (5)

The Gini impurity of each definite value for each
feature is calculated using (6) to obtain the weighted
sum value of the Gini to determine the effect of
the feature on the target value, which can be used
to determine which feature has an important role in
determining the root node, child nodes, and leaf nodes
of each decision tree from given total number of features
C and the total number of all categorical target values
in the classNt.

Weighted (Ginit) =
1

Nt

C∑
i=1

Ni ∗Ginit,i (6)

Out–of–bag (OOB) values are data not used in the
training process by decision trees. OOB error values are
used to evaluate model performance and determine the
important feature rank of the model. The OOB error
is calculated by entering OOB data into a decision
tree that is not used in the training data subset and
comparing the results of the predictions with the actual
data. The value of OOB is used to calculate the mean
decrease in an impurity by calculating the average of
the Gini impurity in each feature in each decision tree.
RFECV is done by setting the k-value and step value
you want to use. After selecting the step and k-value,
RFECV divides the data into k-folds with k−1 folds as
test data. The average value of OOB error is calculated
for all k-folds. The calculation results from the OOB
error are used by the grid search to determine the
best hyperparameters to determine how many features
and which features need to be used to get the highest
accuracy.

D. Evaluation Metrics

Performance evaluation is a critical thing from
the model testing stage. This aims to determine the
performance of the model based on certain metrics;
several metrics that are commonly used to measure
model performance are shown in (7) up to (10) [19].
The five metrics are calculated by comparing the
predicted label with the ground truth label. A true
positive (TP ) is when the predicted label has the same
value as the positive ground truth label. A false positive
(FP ) is when the predicted label differs from the
positive ground truth label. A true negative (TN ) is
when the predicted label matches the positive ground
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truth label. A false negative (FN ) is when the predicted
label differs from the negative ground truth label.

precission =
TP

TP + FP
(7)

accuracy =
TP + TN

TP + FP + TN + FN
(8)

recall (TPR) =
TP

TP + FN
(9)

F1 =
2× precission× recall

precission+ recall
(10)

AUC-ROC refers to the area under the receiver
operating characteristic curve. It is a machine learning
algorithm metric used to evaluate classification models.
The ROC curve is a graph that plots the rate of true
positives (TPR) against the false positive rate (FPR) to
indicate the performance of a classification model at
all classification criteria [20]. The AUC is obtained by
measuring the two-dimensional Area under the entire
ROC curve from (0,0) to (1,1). AUC is a metric that
spans from 0 to 1 and offers an aggregate performance
assessment over all possible classification thresholds
using (9) and (11).

Sensitivity(FPR) =
FP

FP + TN
(11)

III. RESULT

The data collected consists of nine numerical input
data and 1 data label categorical potability, totaling
3,276 data lines data. Data preprocessing was done by
identifying empty values and finding empty data in the
pH, sulfate, and Trihalomethanes features, respectively,
491, 781, and 162 data. The data imputation process
is carried out to fill in the blank data by filling in the
blank data with the average feature value.

The high accuracy cannot be separated from the
correlation between parameters, Fig. 4 shows the
correlation between parameters with other parameters.
Fig. 4 shows a strong correlation between the levels of
pH and solids, pH and hardness, sulfate and hardness,
and sulfate and solids, which are visualized through
heatmap graphics. The existence of a correlation for
each of these parameters will create a pattern that can
be used by machine learning to determine the potability
level of drinking water.

Islam et al. showed a correlation between solids and
pH by sampling water bottles from 14 domestic brands
in Dhaka City. They showed that the higher the value
of the solid, the lower the pH value and the higher
the conductivity value, and vice versa [21]. Price et al.
also show the strong correlation between hardness and
pH through zinc toxicity tests and different treatments
of pH changes that affect the level of hardness of
drinking water [22]. Research conducted by Kothan et
al. indicates alkalinity, solids, and hardness correlate
with each other through the concentration of sulfate ions

Fig. 4. Correlations between each feature.

[23]. A correlation between parameters described by the
heatmap and research above illustrates the existence of
related parameters in determining the level of potability.

Fig. 5. RFECV mean decrease impurity for each feature.

The results obtained in the RFECV process by setting
a value of k = 10 and a weight of step = 1 are shown
in Fig. 6. Based on the data shown in Fig. 5 , the input
sulfate feature has the highest influence in determining
the water quality and potability level of a drink, and
the turbidity feature has the lowest feature in knowing
the level of potability.

Based on information from RFECV, the training
process is carried out using five features with the RF
algorithm. The results obtained from the training are
shown in Fig. 7. Through a grid search on RFECV
results, the highest accuracy was obtained when training
used five features, sulfate, pH, hardness, solids, and
chloramines, as shown in Fig. 5 using (7) up to (11).
RFECV has a higher AUC result of 6.85 % higher
than the SVM model and 8.57 % higher than the ANN
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Fig. 6. RFECV accuracy result of testing data.

model. Without RFECV, it has 15.71 % higher accuracy
than the RF model without RFECV.

Fig. 7. Comparison of proposed method results toward other ML
approaches.

IV. DISCUSSION

This section discusses model effectiveness, System
design, and challenge/opportunities.

A. Model Effectiveness

Models with high accuracy and AUC but lower
precision, recall, and F1-score show that the model can
predict negative classes but is not good at predicting
positive classes. Various things can cause this. One of
them is an imbalanced dataset on feature potability,
model complexity that is too deep in predicting the
model, which causes a lack of generalization of the
model on the test dataset, and data quality that is noisy
and contains outliers, which can affect the value of the
evaluation metrics.

This RFECV model proves that feature reduction
from the dataset on detection has a higher accuracy than
the model trained using the entire dataset. Reducing
features in the dataset also reduces computation time,
costs, and the power load to be used, so in addition

to increasing the tool’s effectiveness, this RFECV
technique is proven to increase the cost efficiency of
the design.

B. System Designs

The model from the random forest will learn patterns
from the data used in the potency measuring device.
ESP32 is used in the deployment process for its archi-
tecture, which is built using a 32-bit RISCT Tensilica
Xtensa LX106 MCU, which has been equipped with
FPU and DSP and has a clock speed of 240 MHz
and 520 kb SRAM [24]. ESP32’s ability to perform
machine learning-based computing has been proven
through traffic decrease detection and object detection
based on convolutional neural networks b25. Testing the
inference time of ESP32 in computing Deep Learning
on 50 input layers and 200 hidden layers has a speed
of 1,599 µs [26]; machine learning algorithm tests
on ESP32 have been carried out in various fields,
such as autonomous vehicles, hand gesture recognition,
and speech recognition with various models, such
as RF, SVM, and ANN [27], This makes ESP32 a
major computational component in the design of water
potability level detection systems.

To be able to adapt the machine learning model
into ESP32, the model is converted into a form that
can be interpreted by embedded systems, taking into
account limited resources such as power consumption
and memory allocation from SRAM, ROM, or ROM
[28], by converting the model to in special formats such
as converting into the C++ model from the converted
tflite model or into the tinyML model [29]. Based on the
RFECV results, it is known that the five features that
need to be needed to determine the potability level of
water are sulfate, pH, hardness, solids, and chloramines.
Sensor selection is made based on the parameters shown
in Table 2, considering measurements’ accuracy, range,
and sensitivity.

C. Challenge and Opportunities

The approach to designing a water potability de-
tection system using the machine learning method is
known to bring benefits in cost efficiency and the
effectiveness of the tool’s predictive ability. One of the
challenges of a system design approach using machine
learning is the use of large amounts of data and good
data quality. System design based on data can be used to
design more flexible and more resistant systems under
certain conditions.

The challenge in the design process using a machine
learning approach is that it often requires domain-
specific knowledge, which is often misinterpreted
by machine learning models and makes the model
inaccurate. Besides making designs based only on data,
it can cause bias and misleading predictions, this is
dangerous, especially in the design of a health system
that can impact the health of its users.
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Table 2. Sensor Devices for Each arameter
Parameter Sensor References

Sulfate
The electrochemical spectroscopy-based device made with a laser-inscribed technique with -
material polyethylene terephthalate film coated with a thin layer of aluminum film (Al/PET)
can read sulfate in water at 0.1 ppm – 1000 ppm with a sensitivity of 0.874 ω/ppm

[24]

pH PH4502C, an electrochemical electrode made of Ag/AgCl and KCl solution,
with an accuracy of 98.10%. [25]

Hardness WD-35802-49, an ion-selective electrode that could measure Ca2+ values, was converted into
an electrical signal with a range of measurement from 0.4 ppm – 40.000 ppm. [26]

Solids TDS sensor, stainless steel that is used to measure the conductivity of
dissolved solids that proof had an accuracy of 97.80%. [27]

Chloramines A carbon-based free chlorine sensor with 186 nA/ppm. [28]

V. CONCLUSION

Based on this research, it is known that the use
of the RFEV method in the design selection process
has a significant impact on system effectiveness. The
use of RFECV can reduce nine parameters to five
parameters. The use of RFECV with the RF algorithm
has a better accuracy value of 15.71 % than the RF
model, 6.85 % better than the SVM model, and 8.57
% better than the AN model trained without RFECV,
with values of accuracy, precision, recall, F1-score, and
AUC respectively 0.81, 80, 0.67, 0.73, and 0.78.

The water potability prediction system’s design
selection is based on feature elimination results in
the RFECV process. It is based on a literature review
on device selection. The proposed water potability
detection system consists of ESP32 as the main comput-
ing device, electrochemical spectroscopy-based Al/PET
sensor to detect sulfate values with a sensitivity of 0.874
Ω/ppm, PH4502C as a pH measuring device with an
accuracy of up to 98.10 %, WD–35802–49 electrode.
as a device for measuring the hardness level in water
with a measurement range of 0.4 - 40,000 ppm, a total
dissolved solids sensor to determine the solids content
in water with an accuracy of up to 97.80%, as well as
a carbon-based sensor for measuring chloramines with
a reading capability of 186 nA/ppm.
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