An enhancement to the FLC-based baby incubator system
using genetic algorithm
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Abstract — This research problem focuses on treating premature babies due to hypothermia, so the baby must be put in an
incubator for several days. The conventional intensive care method in premature babies is known as the skin-to-skin care
method between mother and child. With the latest technological developments, the method is already based on electrical
Internet of Things (IoT) engineering. This research proposes the design of an loT-based prototype known as a smart incubator.
This prototype has been equipped with a real-time monitoring system using the Mamdani Fuzzy inference system control
and combined using the genetic algorithm method. The results showed that the ideal temperature range in the smart incubator
was 33 °C with an accuracy of 99.97 % and was by the fuzzy membership degree in the range of 29 °C < x < 37 °C.
Furthermore, the ideal relative humidity range in the smart incubator was 60 % with an accuracy of 98.60 % and was by
the fuzzy membership degree in the 59 < x < 65 range. Then, the noise range in the smart incubator is 37.9 dB to 56.8
dB with an accuracy of 96.44 % and has been appropriate at the fuzzy membership degree. At a maximum distance of 50

cm, it takes 8 seconds for the prototype to detect movement as a safety measure.

Keywords — FIS-mamdani, genetic algorithm, smart incubator, I0T.

I. INTRODUCTION

A premature birth is a condition where the baby
is born at the age of less than or equal to 37 weeks
and weighing less than or equal to 2,500 gr, as stip-
ulated by the World Health Organization (WHO) in
its regulations [1]-[3]. Observations made by [4]-[6]
showed that a premature baby experienced a decreased
immunity due to his or her difficulty in adapting to
the environment, including some heat loss from the
conduction (because the surface directly related to the
baby was colder); the convection (due to the baby’s
movement); the radiation (due to colder objects that
were not in direct contact with the baby); the water
evaporation (due to the surface of the skin and lungs).
Babies born prematurely need some intensive care in
an incubator [7], that describes a mother’s uterus since
the device is ready to maintain warmth stability (e.g.,
the ambient temperature of the incubator, the baby’s
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temperature, and the humidity around the incubator).
When the latest technology of an incubator is applied,
it shows that the incubator has been very organized
and automated. Moreover, this technology is supported
by the transition of a conventional incubator (manual
setting of temperature and humidity) into an incubator
automatically capable of remotely monitoring the baby
based on the Internet of Things (IoT) [8], [9].

An incubator designed according to Marwanto et
al. [10] is a representation of the function of a uterus.
It means that an incubator is supposed to control
the surrounding temperature and humidity to support
the development of the baby; therefore, a fuzzy logic
control (FLC) is employed to create a stable sur-
rounding environment for the baby to maintain his or
her body temperature within the range of normal and
relatively constant values. In the same year, Azkiyak
et al. [11] discussed the results of implementing an



Android-based IoT incubator. Next, Azman et al. [12]
developing an incubator based on IoT focuses on
monitoring the temperature and the humidity of the
incubator so that the results can still be implemented
on a simple test scale. Therefore, Dutta and Anjum [13]
explain that the temperature and the humidity are some
unpredictably varied factors if one takes into account
various cases around the incubator [14], eventually
resulting in some output levels controlling the heater
and the humidifier.

In 2021, Luthfiyah et al. [9] explains the use of
wireless fidelity (Wi-Fi) facility to support IoT in
a kind of centralized monitoring system shown in
one monitor against several infant incubator nodes.
Mizanur et al. [15] proposes an incubator temperature
control design using fuzzy-based proportional integral
derivative (PID), so the effective time and overshoot
will be obtained to identify the accuracy of the in-
cubator temperature. Furthermore, Alimuddin er al
[16] proposes a fuzzy-PID system performance design
to regulate the temperature and humidity by compar-
ing the temperature and the humidity outputs in the
baby incubators. The results show that the controller
successfully achieves and maintains the temperature
and humidity setpoints. Therefore, taking into consid-
eration the results of the observed literature review
(OLR) that has previously been carried out, a fuzzy
inference system (FIS) is the right method for this
study aimed at determining various decision factors in
the development of an IoT incubator.

In line with the OLR stated above, the results of
the research review show that FIS plays a relevant
role in the use of IoT. Research in [17]-[19] defines
IoT as a concept that combines several things (de-
vices/components) and the “Internet” facility, so the
conventional prototype becomes something that can
be managed, monitored, and controlled remotely [20],
[21]. Widhiada et al. [22] introduces the results of
a fuzzy-based prototype in maintaining the stability
of the membership function (MF) against 1 input
(Temperature and Humidity) with 1 Output (Lights)
with lights on/off conditions. Then, the FIS performed
by Sumardi et al. [23] consists of 1 MF-input (Tem-
perature) to produce an MF-output, namely on/off
lightbulbs. Furthermore, Budiyanto et al. [24] intro-
duces the prototype results of FIS-Sugeno optimization
on the wireless sensor network (WSN) to monitor
forest fires consisting of 2 MF-inputs (Temperature
and Smoke) producing 1 MF-output (Fire hot spot)
then producing four conditions such as Normal, Alert,
Standby, and Watch Out conditions.

In 2021, Silalahi et al. [25] proposes a new stu-
dent admission selection system consisting of four
MF-inputs (subject scores) resulting in 1 MF-output
(passed the selection) including failed conditions, wait-
ing list, continue the test, and passed without test
finally displayed in an Android-based dashboard. As

having been mentioned above, the research is imple-
mented and is centered on several ambient conditions.
It means that this study is aimed at identifying factors
that maintain the temperature and the humidity of the
baby in the incubator so that he or she feels com-
fortable and safe in the incubator for a certain period
referring to the setpoint (centroid). Thus, this study
proposes the development of an IoT incubator using a
FIS method. We must keep in mind that a FIS method
works under several closed-loop control conditions.
It means that it takes a condition that is used as
an unpredictable variable to take a certain action. In
this case, the FIS-input condition used as the variable
is the temperature of the baby moving dynamically.
Moreover, the static/fixed conditions are the ambient
temperature incubator and moisture incubator to issue
a high/low cooling fan incubator action.

Nonetheless, the MF setting on Fuzzy can poten-
tially be automated, so the next proposed solution
method is a genetic algorithm (GA) method. [26] was
the first researcher to successfully conduct various GA
simulations for a premature baby incubator control sys-
tem to improve the temperature control performance.
The approach was analyzing the incubator’s physical
phenomena involving its dynamic behaviors by using
a recursive least square (RLS) technique so that the
output would show that the mathematical model of
the predicted incubator was by the measured data
whose output identified the temperature case and the
appropriate humidity; moreover, it made up a decision
on an appropriate reaction based on the conditions oc-
curring in the baby incubator environment [27]. Later,
Yeler and Koseoglu [28] produced a baby incubator
by using a modular thermoelectric heat pump system
(MTEHPS) based on various thermal and hydraulic
parameters obtained from the optimization results. The
shortcomings and the problems arising in the resistance
incubator system were anticipated with an improved
thermoelectric system.

Furthermore, Maghfiroh et al. [29] states that an
incubator designed by using s digital scale as auto-
adjustment to the PID Control produced an optimal
setpoints achievement condition. Balseca et al. [30]
states that the Fuzzy PI (Proportional Integral) con-
troller that has been tuned through the GA produces a
combination of superior accuracy techniques until the
method achieves the parametric identification resulting
in a comparison controller through the integral squared
error (ISE) and integral absolute error (IAE) indexes.
Thus, it can be stated that GA [31]-[33] is a meta-
heuristic method in which each membership function
contained in the FIS becomes a chromosome/individual
that has been predicted to strongly support the FIS
method in determining the decisions. It means that the
MF setting on Fuzzy requires a GA role to improve
the fuzzy performance. Therefore, this study results in
a dynamic control condition of the high/normal/low



setting of the cooling fan based on the closed-loop
controller condition that has been locked at the "baby
temperature’ resulting in an automatic and dynamic
setting of the high/low speed of the cooling fan.

This study is aimed at identifying and controlling
the temperature of a newborn baby. The first section
presents a global identification of the problem of
the proposed study using an FIS-GA method for a
premature infant by varying the membership functions
of the infant’s temperature. The second section con-
tains theoretical studies and mathematical modeling of
ladder functions and IoT support. The third section
describes the processing results after GA optimizes
FIS. Moreover, it is continued with the results of
the study to draw some conclusions in the fourth
section. Finally, this study contains proof of concept
of functions and/or important characteristics analyt-
ically and experimentally on a laboratory scale to
produce a prototype demonstrated into a new smart
incubator model. The monitoring and control process
is integrated with the Internet of Things in real-time,
with accuracy/precision and simulation of the system
approach so that the test results will prove technically
feasible.

II. MATERIAL AND METHOD

In the second section, theoretical studies and math-
ematical modelling supporting the implementation of
a smart incubators employing an IoT-based FIS-GA
method [11], [34]-[36] are discussed. This study has
three hypotheses. The first hypotheses is that heat loss
factors account for the control system performance
testing supporting system decision making [9], [37].
The second hypotheses is heat transfer due to neg-
ligible radiation [38]-[40], and the third hypotheses
is that the fan curves and the interpolations around
the setpoint are accurate enough in various operating
conditions resulting in the incubator equation as shown
on (1) [41].
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Zimmer et al. [42] states that the heat transfer
through the incubator is measured from the dimensions
of the incubator design and by paying attention to the
thermal properties that have been adjusted to the baby’s
body temperature. Thus, based on the calculation of the
mass flow rate, Kutz [43] formulates the volumetric
flow rate and operating temperature density to obtain
the results as shown on (2).
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Furthermore, the convection coefficient through in-
terpolation of its thermal properties, kinematic viscos-
ity (v), followed by the calculation of the numbers
Reynolds (R.), Rayleigh (R,), Grashof (G,), and
Prandtl (P,) then produces the equation as shown on

(3) - (10).
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Therefore, the data are collected on the basis of
measuring the temperatures ranging from 32 °C to 36
°C [1]-[3] and reading the humidity in the incubator.
Furthermore, the materials and methods will be de-
scribed in the following section.

A. Internet of Things

Shabeeb et al. [7] states that a system that goes
through Wi-Fi connection is connected to a smartphone
or computer application. Furthermore, it is processed
by an Arduino microcontroller [44], [45], and the
DHT11 sensor and its supporters are displayed on the
liquid crystal display (LCD) screen as shown in Fig.
1.

DHTI11 Sensor
Liquid Arduino UNO
crystal

display l

ESP8266 WiFi
module

/

Thingspeak

Fig. 1: IoT model-1.

Athavale et al. [46] produces a prototype of an
embedded device for the real-time monitoring of a
newly born baby in an incubator. That device enables
an early detection of any potentially life-threatening
events and maintains a safe environment for the baby.
It is known that the normal temperature ranges from
36.5 °C to 37.2 °C. Therefore, this study is mainly
aimed at overcoming any shortcomings and providing
an environmentally friendly service to the community
as shown in Fig. 2.

Latif er al. [47] proposes a smart incubator that
can monitor a newly born baby continuously and can
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Fig. 3: IoT model-3.

directly transmit the medical data to the cloud storage.
The results of that monitoring can be seen from a
mobile phone or a computer system in the real time
with a displayed accuracy that can easily be understood
by a doctor if there are findings related to the baby’s
health as shown in Fig. 3 [48].

B. Fuzzy Inference System (FIS)

Departing from the global problem and its applica-
tion, Mamdani’s model FIS theory has an opportunity
to be developed for the treatment of a premature baby.
The FIS-Mamdani method planned in this study con-
sists of fuzzification, rule-based, and de-fuzzification
[48].

1) Fuzzification

Fuzzification is a process of changing the non-fuzzy
variables into the linguistic variables. In Mamdani
fuzzification, either the crisp input or crisp output
variables are divided into the fuzzy sets as shown in
Table 1.

Finally, based on Table 1, the results of the design
of the FIS-Mamdani ladder function equation shown
in (11) - (13) are obtained.
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Fig. 4: MF incubator temperature.
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a. Incubator Temperature Input Variable Member-
ship Function
The incubator temperature input variables are di-
vided into three membership sets, namely Cold,
Warm, and Hot, as shown in Fig. 4.

b. Incubator Moisture Input Variable Membership

Function
The input variables are divided into three sets of



Table 1: Membership Function of FIS-Mamdani

No | MF- MF- MF-Baby MF-Cooling
Incubator Incubator Tempera- Fan
Temp Moisture ture
Cold Low Chill Low

1 MF 1 =0 MF1=0 MF1=0 MF 1 =0
MF 2 =25 MF 2 =25 MF 2 =15 MF 2 =25
MF 3 =50 MF 3 =50 MF 3 =30 MF 3 =50
Warm Ideal Ideal Ideal

2 MF 1 =25 MF 1 =25 MF 1 =15 MF 1 =25
MF 2 =50 MF 2 =50 MF 2 =30 MF 2 =50
MF 3 =75 MF 3 =175 MF 3 =45 MF 3 =75
Hot High High High

3 MF 1 =50 MF 1 =50 MF 1 =30 MF 1 =50
MF 2 =75 MF 2 =75 MF 2 =45 MF2=75
MF 3 = 100 MF 3 = 100 MF 3 = 60 MF 3 = 100

1. If (n¢_temp is Cold) and (inc_mos is High) and (bb_temp is Chil) then (cooling fan_control is normal) (1)

2. If (inc_temp is Cold) and (inc_mos is High) and (bb_temp is Normal) then (cooling_fan_control is high) (1)
3.1 (inc_temp is Cold) and (inc_mes is High) and (bb_temp is Fever) then (cocling_fan_control is kew] (1)

4. If (inc_temp is Warm) and (inc_mos is ideal) and (bb_temp is Chill) then (cooling_fan_control is low) (1)

5. If (inc_temp is Warm) and (inc_mos is ideal) and (bb_temp is Normal) then (cocling_fan_control is normal) (1)
8. If (inc_temp is Warm) and (inc_mos is ideal) and (bb_temp is Fever) then (cooing_fan_controlis low) (1)

7. If (inc_temp is Hot) and (inc_mos is Low) and (bb_temp is Chill) then (cooling_fan_control is high) (1)

8. If (inc_temp is Hot) and (inc_mos is Low) and (bb_temp is Normal) then (cooling_fan_control is normal) (1)

9. If (inc_temp is Hot) and (inc_mos is Low) and (bb_temp is Fever) then (cooling_fan_contrel is low) (1)

Fig. 8: Rule editor inference.

memberships, namely Low, Ideal, and High,
as shown in Fig. 5.

c. Baby Temperature Input Variable Membership
Function
The baby temperature input variables are di-
vided into three membership sets, namely C'hill,
Normal, and Fever, as shown in Fig. 6.

d. Cooling Fan Output Variable Membership Func-
tion
In the cooling fan, the output variables are the
actions of the cooling fan. The variables are
divided into three membership sets namely Low,
Normal, and High, as shown in Fig. 7.

2) Inference

Inference is an implication stating the process of
drawing a conclusion from the rule: If — And - Then.
In the Fuzzy Mamdani method, the conclusions are
drawn by using the MIN-MAX implication function.
Fig. 8 shows a combination of fuzzy rules.

3) Defuzzification

By evaluating the diverse scenarios that may arise
from the fusion of 7, (incubator temperature), T3
(incubator moisture), and 75 (baby temperature), the
fuzzy system rules are formulated. The set of rules is
provided in Table 1 serving as a control system charac-
terized and operated in a regulatory mode. The Fuzzy
rules manipulate the hot air flow value depending on
the actual 7, and Ty values, so the 7, (the baby’s
core temperature) can be arranged within the variable
random range. For instance, if Ty = Normal (N), Ty
= Ideal (I) and T, = Warm (W), then the flow rate
(Q) should be Normal.

The crisp output of the @, as indicated in (14),

is obtained by employing the centroid defuzzification
scheme [49], [50] to utilize the defuzzified output
membership value.

PO ijbj} 14

Where R; represents the centroid of domain j, and
®; represents the output of membership of domain j,
with j =1to3 (j =11is Low, j =2 is Normal, j =
3 is High).

The use of the membership functions and Table 1
are as follows. First, let’s assume that 7, = 31.5 °C,
the 31.5 °C temperature is in the C'old (C) and Warm
(W) domain; therefore, it does not contribute to other
domains. 31.5 °C cuts the Warm limit by 18.5 and
Cold by 6.5.

Next, let’s assume that at this point 7, = 31.5 °C,
the 31.5 °C temperature is in the Low (L) and Ideal
(1) domains; therefore, it does not contribute to other
domains. 31.5 °C cuts the Warm limit by 18.5 and
Cold by 6.5.

Next, let’s assume that at this point, Ts = 33.2 °C.
The corresponding membership value can be calculated
by using an equation that defines the triangular bound-
aries of the domain (see Table 1). 33.2 °C cuts the
Normal limit by 3.2, and Fever by 11.8 and does
not cut in other domains.

Finally, the fuzzy output is then defuzzified by using
a centroid defuzzification scheme to calculate the crisp
against (. In the example above, the crisp value (2)
is calculated by using (15).

1221 + Q2o + a3xzs - + T2y
a1+ oo+

7= (15)

Thus, the result of the crisp value against @ is 2.9378.
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Fig. 9: Research diagram block.

C. Genetic Algorithm (GA)

GA is a random-based optimization algorithm used
for solving complex problems. It comprises three fun-
damental steps: selection, cross-over, and mutation.
In GA, solutions are represented as binary strings
called chromosomes, with the individual components
of chromosomes referred to as genes. It is impor-
tant to maintain an equal number of genes on each
chromosome. The fitness function evaluates the fitness
value of each chromosome. The population refers to
the collection of chromosomes [51], [52]. GA operates
as an iterative process, employing three operators to
generate new chromosomes and improve the overall
solution.

The selection operators play a crucial role in GA
by choosing “parents” with higher fitness values to
generate the next generation of offspring. This study
employs the “roulette wheel” selection operator for this
purpose. Additionally, the study utilizes the following
operators:

a. Crossover operator: This operator combines the
genes of the selected “parents” to create new
offspring. In this study, a single-point method is
employed during the crossover phase.

b. Mutation operator: To enhance exploration of
the search space, the newly produced chromo-
some undergoes single or double gene modifi-
cations.

The selection operators are theoretically the most
influential in directing GA towards an optimal solution
and narrowing down the search space. Their aim is to
leverage the best attributes of a promising solution can-
didate, improving it across generations. By following
the guidance of GA, the optimization problem at hand
can be solved satisfactorily, leading to an acceptable
solution [53]-[55].

Connected from the proposed selection operator, the
use of roulette wheel selection (RWS), is a method
of characterizing the probability of Selection (p; ) on
each chromosome (¢) in the current population, which
is proportional to the fitness value (f; ) as shown in
(16).

e L
PO
Population size is denoted by n. It should be noted

that a well-known drawback of this technique is the
risk of GA’s too quickly reaching the local optimum

(16)



t START )

®

Initialize FIS-MAMDANI Initialize
Tuni Parti -
I/0 uning articles Getting data
l from:
For each 1. f‘:“lit“
sensor check: Show particles’s 2 C';‘oe:sover
Activation and seluainbs position evaluate -Selcction
Authentication po the fitness
£ § operator
O unction 3. Mutation
' Get Incubator | o selection
All Temp, operator
sensors Incubator NO
ormal’ Moisture, and ‘I
Baby Temp
YES YES
' - set best of
send setpoints tIhf fitness t'.r:tbteert pbest as
to Blynk an persona ST —™
' l) ‘ (pbest) global best . ,
Display (gbest)
® D
Fig. 10: Flowchart: FIS optimized by GA.
105 Optimization FIS via GA
point due to the presence of some dominant individuals ' ' |
who always win the competition and are selected as the |
broods. 095
. . . . . 0 9 I
Accordingly, in this study, GA is used due to its e
success of controlling the baby’s temperature which - .
is dynamic; meanwhile, the sensors are installed to © 08y
perform sensing and readings representing the real o7
conditions of the changing temperature (ambient tem- 07}
perature). It means that if that is the case, it is known 065
that the designed system is a closed-loop controller st
system. 055 , . . |
0 10 20 30 40 50 60
FIS
ITI. RESULT Fig. 11: FIS optimization results using GA.

In the third section, the results of the design of the
block diagram as shown in Fig. 9 are discussed. More-
over, Fig. 10 shows the design of the GA optimization
flow chart against FIS. Next, FIS is processed after the
GA optimization to the IoT implementation for a smart
incubator design.

A. FIS-GA Optimization

Fig. 11 shows the results of FIS processing after
GA optimization by using a minimization scheme. In
this study, MATLAB is used to predict the output of
the incubator fan cooling speed-based inputs such as
the incubator temperature, the incubator moisture, and
the baby temperature. A FIS-Mamdani is proposed
since the process of drawing its conclusions uses the
min-max implication function which is described as
follows.

Fig. 12 shows the results of the Mamdani’s fuzzifi-
cation processing. Both crisp input and the crisp output
variables are divided into fuzzy sets based on the GA

il ratse U oy’

Fig. 12: MF baby temperature.

optimization results where the GA optimization and
the value used as a variation called MBF1 — MBF2
— MBF3 are in the baby incubator variable input
membership function.

FIS-Mamdani analysis consists of several steps,
including:



1) Step 1: Fuzzification function

The fuzzy set of Warm against the detection of the
37 °C temperature in the smart incubator is based on
(11). Parameter set up, u[z] = 37, Cold =50, Warm =
75, and Hot = 100. Then the results obtained according
to (17).

plz =37 Warm =

= 0.6 (17)

35— 50 —15
75 — 50 25

Analysis: The temperature detection result is declared
Warm with the MF amounting to 0.6 or 60 %.

The fuzzy set of Ideal against the detection of the

60 % moisture in the smart incubator is based on (12).
Parameter set up, plz] = 60, Low = 25, Ideal = 75,
and High = 100. Then the results obtained according
to (18).
_60—-25 35
S 75-25 50
Analysis: Moisture detection results are declared Ideal
with the MF amounting to 0.7 or 70 %.

0.7

ulz = 60] Ideal (18)

Fuzzy Normal fuzzy set against the detection of

the infant’s temperature amounting to 36 °C in the
smart incubator is based on (13). Parameter set up,
plz] = 36, Chill = 30, Normal = 45, and Fever =
60. Then the results obtained according to (19).
36 — 30 6
530 15
Analysis: The baby’s temperature detection results are
declared Normal with the MF amounting to 0.4 or 40
%.

2) Step 2: Inference function

Based on the rules having been applied according
to the implication function, nine rules are produced
as shown in (20). Moreover, they are clarified by the
results as shown in Table 2.

o — predicate =prT_warm N UIH_Ideal

N 1BBT_Normal

ulz = 36] Normal = (19)

=min (/J’IT_Warm (06) )

(20
MIH_Ideal (07) 5

MBBT_Normal(OA))
=min(0.6,0.7,0.4)

3) Step 3: Defuzzification function
After the implication rule is successfully created,
the result of the composition of the rules is shown on

(21), (22), and (23).

(a1 —30)/29 = 0.16 — a; = 34.64  (21)
(a3 — 60)/59 = 0.16 — a; = 69.44  (22)
(as — 36)/35 = 0.70 — a; = 60.64  (23)

The defuzzification (affirmation) stage is the stage
of processing the input numbers obtained from the

composition of the rules into the output numbers. The
result of the defuzzification process using the centroid
method is shown on (24), (25), and (26).

34.64
M, = / (0.16)z dz = 95.99 24)
0

69.44
My = / (0.16)z dz = 385.75  (25)
0

60.5
M, :/ (0.7)z dz = 1281.08 (26)
0

Hence, the calculation of the centre point in each
area is as follows:
a; =34.64 x 0.16 = 5.54
as =69.44 x 0.16 = 11.11
a3z = 60.50 x 0.70 = 42.35

Analysis: the defuzzification results of the composition
output and the centre point of each area can be shown
on (27).

_95.99 + 385.75 + 1281.08

= 29.88
5.54 4+ 11.11 4+ 42.35

27

Furthermore, MATLAB produces the simulation output
as shown in Fig. 13 and Fig. 14.
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Fig. 13: Output: Rule settings.

Fig. 14: Output: Surface assignment.



Table 2: Inference Rules on the Internal Smart Incubator

Rule | Incubator Temperature | Incubator Moisture | Baby Temperature | Cooling Fan
RO1 Cold High Chill Normal
R0O2 Cold High Normal High
RO3 Cold High Fever Low
RO4 Warm Ideal Chill Low
RO5 ‘Warm Ideal Normal Normal
RO6 Warm Ideal Fever Low
RO7 Hot Low Chill High
RO8 Hot Low Normal Normal
RO9 Hot Low Fever Low
Table 3: Inference Rules on the Internal Smart Incubator

Rule | Incubator Temperature | Incubator Moisture | Baby Temperature | Cooling Fan
RO1 Cold High Chill Normall
R0O2 Cold High Normal High
RO3 Cold High Fever Low
RO4 Warm Ideal Chill Low
RO5 Warm Ideal Normal Normall
RO6 Warm Ideal Fever Low
RO7 Hot Low Chill High
RO8 Hot Low Normal Normall
R0O9 Hot Low Fever Low

B. Internet of Things

Table 4: DHT-22 Temperature and Moisture Sensor Test

Rule Incubator Temperature
Microcontroller AM-2302
Prototype Size 33 -55VDC

Output Signal

Digital Signal

Operating Range

Moisture = 0 — 50°C'

Temperature = +2%RH (max 5%RH)

Accuracy

Moisture = +2%RH (max 5%RH)
Temperature = +0.5°C'

Tested Parameter

Temperature = 30°C.
Error =+1.9%; Accuracy = 98.10%

Temperature = 33°C.
Error = :0.3%; Accuracy = 99.97%

Temperature = 35°C.
Error = +0.4%; Accuracy = 99.60%

Temperature = 37°C'; Error=2+0.24% ; Accuracy = 99.76%
Moisture = 60% ; Error = +1.4% ; Accuracy = 98.60%

Fig. 15: Design result: prototype.

Fig. 15 shows the final design of the smart-incubator
prototype having previously been designed. The data

are collected on the smart-incubator prototype with the
specification of the overall test results of the smart-
incubator system parameters as shown in Table 3.

Table 4 shows the results of the specification test
on the DHT-22 temperature and the moisture sensor
on the smart-incubator prototype with the measured
parameter values.

Table 5 shows the results of the specification test on
the DS-18B20 mattress sensor on the smart-incubator
prototype with the measured parameter values.

Table 6 shows the results of the specification test
on the LM393 sound sensor on the smart-incubator
prototype with the measured parameter values.

Table 7 shows the results of the specification test
on the PIR HC-SR501 sensor on the smart-incubator
prototype with the measured parameter values.



Table 5: DS-18B20 Mattress Sensor Test

Rule Incubator Temperature
Model DS-18B20
Power Supply 3.3 -55VDC
Output Signal Digital Signal

Operating Range | Temperature = 0 — 50°C'
Temperature = +0.5°C'
Temperature = 36.05°C.
Error = +0.13%.
Accuracy = 99.87%
Temperature = 37.31°C.
Error = +0.53%.

Accuracy = 99.47%

Accuracy

Tested Parameter

Table 6: LM393 Sound Sensor Test

Type Information
Model IC LM393
Power Supply 3.3-5.5 VDC

Output Signal Analog Signal

Microphone Sensitivity | Sensitivity can be adjusted
Sound test = 56.8 dB.
Error = +4.05%.
Accuracy = 95.95%
Sound test = 37.9 dB;
Error =+3.56%.

Accuracy = 96.44%

Tested Parameter

Table 8 shows the results of the specification test on
the 2-Channel Relay on the smart-incubator prototype
with the measured parameter values.

Table 9 shows the results of the specification test on

the cooling-fan on the smart-incubator prototype with
measurable parameter values.

Table 7: PIR Sound Sensor Test HC-SR 501

Type Information
Model HC-SR501
Power Supply 33 -55VDC
Output Signal Digital Signal
Operating Range | 50 cm

Sensitivity Sensitivity can be adjusted

Distance = 10 Cm; Time On = 2 sec
Distance = 20 Cm; Time On = 3 sec
Distance = 30 Cm; Time On = 4 sec

Tested Parameter

Distance = 40 Cm; Time On = 6 sec
Distance = 50 Cm; Time On = 8 sec

Table 8: Relay 2-channel Test
Type Information
Model Relay 2-Channel
Power Supply 3.3 -55VDC
Rated current main switch | 10 Ampere

Tested Parameter Switch Normally Open

220 VAC (Air Heater)
Switch Normally Open 9
VDC (Fan)

Table 9: Air Heater and Fan Test
Type

Fan

Information
Power supply =5 - 9 VDC
Dimension =9 X 9 x 2 Cm
Adjustable speed = 500 — 4000 RPM

C. System Analysis

1) Internet of Things-based baby temperature test-
ing analysis

Fig. 16 shows the results of the calibrated data cap-
ture. The body temperature measurement is adjusted to
the normal limit of the human body namely 36.1 °C.
The normal temperature is indicated with the blue led
indicator ON, while the body temperature with a fever
is indicated with the red led indisator ON.

Baby Temperature
Babry temperature indicator: Fever

Babry tempersture indcator. Normal

Fig. 16: Results of IoT-based smart-incubator imple-
mentation.

2) IoT based baby voice testing analysis

Fig. 16 shows the results of comparing the noise
read by the LM-393 sensor to the AS-804 digital sound
level meter sound calibrator. The test is conducted by
making noise for one minute. The indicator lamp will
turn red (Loud) when the noise level exceeds 45 dB
and will turn blue (Normal) when the noise level is
less than 45 dB.

3) IoT based baby voice testing analysis

Fig. 17 shows the results of comparing the noise
read by the LM-393 sensor to the AS-804 digital sound
level meter sound calibrator. The test is conducted by
making noise for one minute. The indicator lamp will
turn red (Loud) when the noise level exceeds 45 dB
and will turn blue (Normal) when the noise level is
less than 45 dB.
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F1g 17: Sound testing: a) Loud ; b) Normal.

4) Final Analysis
Based on the results of the study, some final analy-
ses are made. They are as follows:



1) The ideal temperature for the baby incubator:

Table 12: Measurement Result of 35 °C Incubator

a) Table 10 shows the results of the tempera- Temperature
ture test accuracy at 30 °C on the DHT-22 . Hygro-
temperature measurement with the Thermo No Time meter | DHT-22 | Gaps | Acc
. o) (o) (%)
Hygrometer with an average accuracy of
98.13 %. 1 23:51:00 35 35.2 0.2 99.4
2 | 23:52:01 35 35.2 0.2 99.4
Table 10: Measurement Result of 30 °C Incubator 3 | 23:53:01 35 35.2 0.2 99.4
Temperature 4 | 23:54:02 35 35.2 0.2 99.4
Hygro- 5 23:55:01 35 35.1 0.1 99.7
No Time meter | DHT-22 | Gaps | Ace 6 | 23:56:01 35 35.1 01 | 99.7
°C) °0) (%) 7 | 23:57:01 35 35.1 0.1 99.7
1 19:24: 00 30 30.6 0.6 98 8 23 :58: 00 35 35.1 0.1 99.7
2 19 : 25 : 00 30 30.7 0.7 97.7 9 23:59:01 35 35.1 0.1 99.7
3 19 : 26 : 00 30 30.7 0.7 97.7 10 00 :00: 02 35 35.1 0.1 99.7
4 | 19:27:00 30 30.7 0.7 | 97.7 Total 350 351.4 1.4 | 995.8
5 | 19:28:01 30 30.7 0.7 97.7 Average 35 35.14 0.14 | 99.58
6 | 19:29:01 30 30.6 0.6 98
7 | 19:30:01 30 30.5 0.5 08.4 Table 13: Measurement Result of 37 °C Incubator
8 | 19:31:01 30 30.4 0.4 98.7 Temperature
9 | 19:32:02 | 30 30.4 04 | 98.7 Hygro-
10 | 19:32:02 30 30.4 0.4 98.7 No Time meter | DHT-22 | Gaps | Acc
Total 300 305.7 12 | 981.3 (°C) (°0) (%)
Average 30 30.57 1.2 98.13 1 15:19:01 37 37.2 0.2 99.5
2 15:20:01 37 37.2 0.2 99.5
b) Table 11 shows the results of the tempera- 3 | 15:21:01 37 37.1 0.1 99.7
ture test accuracy at 33 °C on the DHT-22 4 | 15:22:00 37 37.1 0.1 99.7
temperature measurement with the Thermo 5 | 15:23:00 37 37.1 0.1 99.7
Hygrometer with an average accuracy of 6 | 15:24:01 37 37 0 100
99.43 %. 7 15:25:02 37 37.1 0.1 99.7
8 15:26: 00 37 37 0 100
Table 11: Measurement Result of 33 °C Incubator 9 | 15:27:00 37 371 01 09.7
Temperature 10 | 15:28:01 37 37 0 100
Hygro- Total 370 331,9 0.9 997.5
No Time meter | DHT-22 | Gaps | Acc Average 37 33.19 | 0.09 | 99.75
(o) (o) %)
1 | 19:48:01 33 33.1 0.1 99.7
2 | 19:49:01 33 33.7 0.7 | 97,9 1. The incubator’s normal limit humidity setting
3 [ 19:50:01 33 33.2 0.2 99.4 is <60 % RH so that the Fan function will
4 |19:51:02 33 33.2 02 99.4 be ON. Table 14 shows the results of humidity
S | 19: 5? : 02 33 3?'2 02 | 994 measurements, when the humidity is set at 60 %
6 19:53: 01 33 33.1 0.1 9.7 RH, so the percentage of accuracy is 98.58 %.
7 19:54:00 33 33.1 0.1 99.7
8 | 19:55:00 33 33.1 0.1 | 9.7 Table 14: Humidity Measurement Results
9 19:56:01 33 33.1 0.1 99.7 Hvero-
10 | 19:57:01 33 33.1 0.1 | 99.7 No Time n{ier prr22 | Gaps | Ace
Total 330 331,9 1.9 994.3
Average 33 33.19 0.19 | 99.43 (%RH) | (%RH) (%)
1 15:19:01 60 59.9 0.1 99.8
c) Table 12 shows the results of the tempera- i 12 2(1) 81 28 gzg ;'; 323
ture test accuracy at 35 °C (?n the DHT-22 1 1 15.22.00 %0 59.2 08 087
temperature mf%asurement with the Thermo s | 15:23: 00 60 59.2 0.8 08.7
Hygrometer with an average accuracy of 6 | 15:24:01 60 59 1 93.3
99.58 %. 7 15:25:02 60 59 1 98.3
d) Table 13 shows the results of the tempera- 8 | 15:26:00 60 591 0.9 98.5
ture test accuracy at 37 °C on the DHT-22 9 | 15:27:00 60 59.1 0.9 98.5
temperature measurement with the Thermo 10 | 15:28:01 60 59 1 98.1
Hygrometer with an average accuracy of Total 600 591.6 8.4 | 985.8
99.75 %. Average 60 59.16 0.84 | 98.58

2) Data was collected 10 times based on the output
of the DHT-22 and Thermo Hygrometer HTC-

3) The ideal body temperature, the method carried



out is to take temperature measurements 5 times
at each temperature point with an interval of
one minute, the thermometer test is placed in
the armpit of the baby, while the DS-18B20 is
installed on the mat to detect the baby’s body
temperature. Normal body temperature measure-
ments have been adjusted to 36.1 °C, while
febrile body temperature has been adjusted if it
exceeds 37 °C.
a) Table 15 shows the results of testing body
temperature in a normal state of 36.1 °C
with an accuracy of 99.88 %.

Table 15: Body Temperature Measurement Results:
Normal

Thermo- DS-

No Time meter 18B20 | Gaps Acc
(0 %) (%)

1 20:28:01 36.1 36.11 0.01 99.9
2 20:29:01 36.1 36.12 0.02 99.9
3 20:30:01 36.1 36.16 0.06 99.8
4 20 :31:00 36.1 36.13 0.03 99.9
5 20:32:00 36.1 36.13 0.03 99.9
Total 180.5 180.65 0.15 499.4
Average 36.1 36.13 0.03 | 99.88

b) Table 16 shows the results of testing body
temperature in a fever state of 37.5 °C with
an accuracy of 99.3 %.

Table 16: Body Temperature Measurement Results:
Fever

Thermo- DS-

No Time meter 18B20 | Gaps | Acc
(8] (S (%)

1 22 :46 : 02 37.5 36.81 0.69 98.2
2 22:47:01 37.5 37 0.5 98.7
3 22:48: 02 37.5 37.38 0.12 99.7
4 22:49:01 37.5 37.48 0.02 99.9
5 22:50:02 37.5 37.48 0.02 99.9
Total 187.5 180.65 1.35 496.5
Average 37.5 36.13 0.27 99.3

4) Ideal noise range for baby incubators, testing us-
ing digital sound level meter AS804 and LM393.
The method used is to take noise readings 10
times with an interval of one minute, totalling
10 minutes.

a) Table 17 shows the test result of noise
inside the incubator of 37.9 dB, accuracy
of 96.45 %. It means that the sound of the
baby incubator is normal.

b) Table 18 shows the test result of noise
inside the incubator of 56.8 dB, accuracy
of 95.95 %. It means that the sound of the
baby incubator is abnormal.

5) Response time to detect an unsafe baby incuba-
tor movement:

a) The measurement results of the HC-SR501
PIR sensor on several inanimate objects

Table 17: Noise Measurement Results: Normal

No Time AS804 | LM393 Gaps Acc
cc) | B %)

1 19:19:01 39.3 38 1.3 96.7
2 19:20:00 39.3 37 2.3 94.2
3 19:21:00 39.3 38 1.3 96.7
4 19:22:00 39.3 38 1.3 96.7
5 19:23:00 39.3 38 1.3 96.7
6 19:24:00 39.3 38 1.3 96.7
7 19:25:00 39.3 39 0.3 99.2
8 19:26: 00 39.3 37 2.3 94.2
9 19:27:00 39.3 39 0.3 99.2
10 | 19:28:00 39.3 37 2.3 94.2
Total 393 379 14 964.5
Average 39.3 37.9 1.4 96.45

Table 18: Noise Measurement Results: Abnormal

No Time AS804 | LM393 Gaps Acc
(°C) | @B) %)

1 21:13:00 59.2 56 3.2 94.6
2 21:14:01 59.2 56 3.2 94.6
3 21:15:00 59.2 56 3.2 94.6
4 21:16:00 59.2 57 2.2 96.3
5 21:17:00 59.2 56 3.2 94.6
6 21:18:00 59.2 56 3.2 94.6
7 21:19:00 59.2 57 2.2 96.3
8 21:20:00 59.2 58 1.2 97.9
9 21:21:00 59.2 58 1.2 97.9
10 21:22:00 59.2 58 1.2 97.9
Total 592 568 24 959.3
Average 59.2 56.8 2.4 95.93

with various distances such as 10 cm, 20
cm, 30 cm, 40 cm, and 50 cm, get a No
Detect Notification, LED OFF condition.
Output volt = 0, logic = 0, time = OFF. as
shown at Table 19.

b) The measurement results of the HC-SR501
sensor on several living things with various
distances such as 10 cm ON time = 2
seconds, 20 cm ON time = 3 seconds,
30cm ON with the time amounting to 4
seconds, 40 cm ON with the time amount-
ing to 6 seconds, and 50 cm ON with the
time amounting to 8 seconds, with Motion
Detect notification, LED condition ON as
shown at Table 19.

IV. CONCLUSION

Based on the results of the study, it is found that the
study has been completed by successfully proving the
concept of function to important characteristics analyt-
ically and experimentally to produce a prototype that
has been calibrated into an IoT-based smart-incubator
model. The temperature of the incubator ranges from
30 °C to 37 °C, and the temperature of the baby can
be detected when it ranges from 34.5 °C to 37 °C,
Moreover, the humidity can be detected up to the 60 %
humidity. The conclusion on the IoT system is drawn;



Table 19: Results of Baby Safety Measurements

HC-SR Volt | Volt
Object 501 Distance In Out | Time
Status (Cm) V) ™) (s)
Inanimate |\ pegect 10 332 | 0 | OFF
Objects
Inanimate |\ pegect 20 332 | 0 | OFF
Objects
Inanimate |\ pegect 30 332 | 0 | OFF
Objects
Inanimate |\ pegect 40 332 | 0 | OFF
Objects
Inanimate |\ pogect 50 332 | 0 | OFF
Objects
Living Detect 10 332 | 283 | 2
Things
Living Detect 20 332 | 283 | 3
Things
Living Detect 30 332 | 283 | 4
Things
Living Detect 40 332 | 283 | 6
Things
Living Detect 50 332 | 283 | 8
Things
the response time has reached real-time. For further

development, we suggest making a solution such as if,
at any time, the IoT is disconnected from the internet,
there should be a warning via SMS, so that the network
interconnection will directly be checked.
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