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Abstract: This study investigates the effectiveness of feature extraction and fine-tuning ap-
proaches in developing robust cyber intrusion detection models using the Network-based
Security Lab - KDD dataset (NSL-KDD). The role of cyber intrusion detection is pivotal in
securing computer networks from unauthorized access and malicious activities. Feature
extraction, involving methods such as PCA, LDA, and Autoencoders, aims to transform
raw data into informative representations, while fine-tuning leverages pre-trained models
for task-specific adaptation. The study follows a comprehensive research method encom-
passing data collection, preprocessing, model development, and experimental evaluation.
Results indicate that LDA and Autoencoders excel in the feature extraction phase, demon-
strating precision, high accuracy, F1-score, and recall. However, fine-tuning a pre-trained
Multilayer Perceptron model surpasses individual feature extraction methods, achieving
superior performance across all metrics. The discussion emphasizes the complexity and
flexibility of these approaches, with fine-tuned models showcasing higher adaptability. In
conclusion, this study provides valuable insights into the comparative effectiveness of fea-
ture extraction and fine-tuning for cyber intrusion detection. The findings underscore the
importance of leveraging pre-trained knowledge and adapting models to specific tasks,
offering a foundation for further advancements in enhancing network security through
advanced ML techniques.
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1 Introduction

Cyber intrusion detection involves the identification and prevention of unauthorized ac-
cess or malicious activities within computer networks. Machine learning (ML) techniques
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have been widely applied to develop effective intrusion detection models [1, 2]. Two com-
mon approaches used in the development of such models are feature extraction and fine-
tuning. Feature extraction involves extracting relevant and discriminative features from
raw data to represent patterns and characteristics of cyber intrusions [3]. In the context of
cyber intrusion detection, raw data typically includes network traffic logs, system logs, or
other relevant data sources. The goal of feature extraction is to transform the raw data into a
suitable representation that captures the essential information for effective intrusion detec-
tion. Feature extraction mechanisms can include statistical methods, information theory-
based measures, or domain-specific algorithms. These techniques aim to select or derive
features that are informative, independent, and capable of discriminating between normal
and abnormal network behavior. Examples of extracted features may include packet head-
ers, flow statistics, time-based patterns, or frequency-based characteristics.

Fine-tuning, also known as transfer learning, involves leveraging pre-trained models
on a large dataset and adapting them to a specific task or domain [4, 5]. In the context of
cyber intrusion detection, fine-tuning typically involves using pre-trained models that have
been trained on general-purpose tasks, such as image recognition or NLP, and adapting
them to the specific task of intrusion detection. Fine-tuning allows the model to benefit
from the knowledge and representations learned from the pre-training phase, which helps
improve the performance and generalization capabilities of the intrusion detection model.
By fine-tuning, the model can learn to recognize high-level patterns and features relevant to
cyber intrusions, even if the initial pre-trained model was not explicitly trained on intrusion
detection data. Through this study, we would like to compare the effectiveness of feature
extraction and fine-tuning approaches in the detection of cyber intrusion attacks.

Assessing the efficiency of feature extraction and fine-tuning in identifying cyber-
attacks is essential for enhancing the effectiveness of ML models in cyber security applica-
tions. Both feature extraction and fine-tuning are techniques used in the process of training
models, and understanding their impact on detection capabilities is essential for designing
robust and accurate cyber threat detection systems. The primary goal is to determine which
approach, whether feature extraction or fine-tuning, leads to better overall model perfor-
mance in terms of recall, accuracy, precision, and other relevant metrics. This comparison
helps identify the technique that produces more reliable and effective results in the context
of cyber attack detection.

2 Research Method

In order to evaluate the efficacy of feature extraction and fine-tuning methods for cyber
intrusion detection models, it is essential to adhere to a systematic scientific research ap-
proach, as depicted in Figure 1.

1. Data Collection: Identify and gather a suitable dataset for the evaluation of intrusion
detection mechanisms. The dataset should consist of labeled examples of normal net-
work traffic and various types of cyber intrusions. Consider using publicly available
benchmark datasets, NSL-KDD [6], or UNSW-NB15 [7].

2. Preprocessing: Preprocess the dataset to ensure its quality and suitability for the re-
search. This involves removing irrelevant or redundant features, handling missing
values, normalizing data, and balancing the class distribution if necessary.
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Figure 1: Research method.

3. Feature Extraction: Implement and apply feature extraction techniques to extract rel-
evant features from the preprocessed dataset. This can include statistical methods,
information theory-based measures, or domain-specific algorithms. Select a diverse
set of feature extraction techniques to explore different representations of the data.
Document the features extracted for each technique.

4. Model Development: Develop intrusion detection models using both feature extrac-
tion and fine-tuning approaches. For feature extraction, there are many ML models
that can be used [8–10], but in this study we use MLP. For fine-tuning, we select a pre-
trained model, a DNN trained on a large-scale dataset, and adapt it to the intrusion
detection task using transfer learning techniques.

5. Experimental Setup: Define the evaluation metrics and experimental setup for com-
paring the performance of the models. The performance metrics include detection
recall, accuracy, precision, F1-score, and area under the curve-receiver operating char-
acteristic [11–13]. Split the dataset into training and testing sets using an appropriate
ratio, e.g., 70:30 or 80:20, ensuring that the class distribution is maintained in both
sets.

6. Model Training and Evaluation: Train the feature extraction models and fine-tuning
models separately on the training set. Perform hyper-parameter tuning if necessary
to optimize the models’ performance. Assess the trained models using the desig-
nated performance metrics on the testing set. Contrast the models’ performance by
analyzing these metrics.

7. Statistical Analysis: Conduct statistical study to ascertain whether notable variations
exist in the effectiveness of feature extraction and fine-tuning methodologies.. This
can involve hypothesis testing using appropriate statistical tests, such as paired t-tests
or Wilcoxon signed-rank tests [14]. Establish the significance level (e.g., p < 0.05) to
assess whether the observed differences hold statistical significance.

8. Results and Discussion: Present and interpret the results obtained from the exper-
iments. Analyze the performance metrics of the feature extraction and fine-tuning
models and compare their effectiveness. Discuss the implications of the findings and
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relate them to the research objectives and hypotheses. Identify the strengths and lim-
itations of each approach and provide insights into their practical applicability.

We make this research method as a guide, but if necessary, the steps can be reduced or
even added.

2.1 Multilayer Perceptrons (MLP)

A MLP is a type of ANN that consists of multiple layers of nodes, or artificial neurons.
It operates as a feed forward neural network, indicating that information progresses in
a unidirectional manner—from the input layer through the hidden layers to the output
layer. Multi-layer perceptron (MLPs) constitute a foundational structure in deep learning
and find extensive application in diverse ML tasks such as classification and regression.

Here are the key components and characteristics of MLP:

1. Input Layer: The input layer is the first layer of the MLP, and its nodes represent the
features or input variables of the data. Each node in the input layer corresponds to a
specific feature of the input data.

2. Hidden Layers: One or more intermediary hidden layers may exist between the input
and output layers. Each hidden layer consists of nodes, and these nodes are often re-
ferred to as neurons or units. The term "hidden" indicates that the data is not directly
observable from the input or output but is processed within the network.

3. Weights and Biases: Each connection between nodes in different layers is associated
with a weight, which represents the strength of the connection. Additionally, each
node has an associated bias term. Throughout the training process, the weights and
biases are modified to reduce the disparity between the predicted output and the
actual output.

4. Activation Function: Nodes in the hidden layers and the output layer usually employ
an activation function on their input. Activation functions introduce non-linearities
into the network, enabling it to grasp intricate relationships within the data. Fre-
quently used activation functions comprise the sigmoid, hyperbolic tangent (tanh),
and rectified linear unit (ReLU).

5. Output Layer: The output layer produces the final result or prediction of the net-
work. The number of nodes in the output layer depends on the nature of the task.
For example, in binary classification, there may be one output node with a sigmoid
activation function, while in multiclass classification, there may be multiple output
nodes with softmax activation.

6. Training: MLPs are trained using a process called backpropagation, where the net-
work learns from a labeled dataset. The weights and biases are adjusted iteratively
based on the error between the predicted output and the true output. This process
aims to minimize the overall error, and optimization algorithms such as gradient de-
scent are commonly used.

7. Universal Approximators: One important theoretical property of MLPs is that, with
a sufficient number of hidden nodes, they can approximate any continuous function.
This property is known as the universal approximation theorem.

MLP have been foundational in the development of deep learning models, and their
architectures have inspired more complex NN structures such as CNNs and RNNs.
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2.2 NSL-KDD Dataset

The NSL-KDD dataset is a well-known benchmark dataset widely used for evaluating in-
trusion detection systems (IDS) in the field of network security. It is an improved version of
the original KDD Cup 1999 dataset [15], designed to address certain limitations and draw-
backs of the earlier dataset. The NSL-KDD dataset aims to provide a realistic representation
of a computer network environment to facilitate the development and evaluation of intru-
sion detection systems. It consists of network traffic data that simulates both normal and
various types of malicious activities, known as intrusions. The dataset was created by cap-
turing network traffic in a controlled environment using a variety of tools and techniques.
The network traffic was generated by simulating different types of attacks and normal ac-
tivities. The data was then preprocessed to extract relevant features and remove redundant
information.

The NSL-KDD dataset includes a set of features derived from network packet headers
and some higher-level features, such as connection-based statistics. These features capture
various characteristics of network traffic, including destination addresses, source, protocol
types, port numbers, packet sizes, and duration of connections. The dataset categorizes
intrusions into four main classes: Denial of service (DoS) [16–18], user to root (U2R) [19],
remote to local (R2L) [20], and probing. DoS attacks aim to disrupt or disable network
services, while U2R attacks attempt to gain unauthorized root access. R2L attacks involve
unauthorized access to a remote machine, and probing attacks are reconnaissance activities
to gather information about a target system. The NSL-KDD dataset provides both a train-
ing set and a testing set. The training set contains labeled instances of both normal and
intrusive network traffic, while the testing set consists of unlabeled instances for evaluat-
ing the performance of intrusion detection systems. Here is an example of the NSL-KDD
dataset (see Table 1):

Table 1: The example of the NSL-KDD dataset
Duration Protocol Service Flag Source Destination Attack Type Label

(Bytes) (Bytes)
0.0 TCP HTTP SF 215 450 normal normal
0.0 TCP HTTP SF 162 452 normal normal
0.0 TCP HTTP SF 236 1,222 intrusion DoS
0.0 TCP HTTP SF 233 2,032 intrusion DoS
0.0 TCP HTTP SF 239 486 normal normal
0.0 TCP HTTP SF 238 1,282 intrusion R2L
0.0 TCP HTTP SF 235 1,337 intrusion R2L
0.0 TCP HTTP SF 234 1,364 intrusion R2L
0.0 TCP HTTP SF 239 1,295 intrusion R2L
0.0 TCP HTTP SF 181 545 normal normal

Table 1 represents a subset of the NSL-KDD dataset, which is used for evaluating intru-
sion detection systems in the field of network security. Each row in the table corresponds
to a network connection or communication session. The "Duration" column indicates the
duration of the network connection. In this subset, all connections have a duration of 0.0,
implying that they are instantaneous. The "Protocol" column specifies the network proto-
col used in the connection. In this case, all connections are using the transmission control
protocol (TCP) protocol. The "Service" column denotes the type of service associated with
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the connection. Here, all connections are related to the hypertext transfer protocol (HTTP)
service, which is commonly used for web communication.

The "Flag" column represents the status or condition of the connection. In this subset,
all connections have the "SF" (SYN Flag) value, indicating a successful connection estab-
lishment. Source Bytes and Destination Bytes: These columns provide information about
the number of bytes transmitted from the source to the destination during the connection.
The values in Table 1 vary across different connections, indicating different amounts of
data transfer. The "Attack Type" column classifies the nature of the network connection as
either normal or an intrusion. In this subset, some connections are labeled as "intrusion,"
suggesting the presence of unauthorized or malicious activities. The specific type of in-
trusion is mentioned, such as "DoS" (Denial of Service) and "R2L" (Remote to Local). The
"Label" column summarizes the overall classification of the network connection. In this
subset, connections that are not flagged as an intrusion are labeled as "normal."

2.3 Feature Extraction Techniques

Various feature extraction methods can work well with MLPs on the NSL-KDD dataset or
similar datasets in the context of cyber intrusion detection. The choice of a specific feature
extraction method depends on the nature of the data and the characteristics of the problem
you are addressing. Here are some feature extraction methods that can be used:

1. PCA [21–23] is a linear method for reducing dimensionality, capable of decreasing the
feature count while preserving the majority of variance present in the data. Effective
for reducing the dimensionality of high-dimensional datasets.

2. LDA is a supervised method that seeks to maximize the separation between classes
in the data, making it useful for enhancing class separability. Suitable when the goal
is to improve the discrimination between different intrusion classes.

3. t-SNE is a non-linear dimensionality reduction method that emphasizes preserving
local structures in the data, making it suitable for visualization. Useful when explor-
ing and visualizing the relationships between instances.

4. Autoencoders: Autoencoders are NNs designed for unsupervised learning and can
be used to learn a compressed representation of input data. Effective for capturing
non-linear patterns and complex relationships in the data.

5. Kernel PCA: Kernel PCA extends PCA by using kernel methods to implicitly map
data into a higher-dimensional space. Useful when linear methods are not sufficient
for capturing complex relationships.

6. Word Embeddings (e.g., Word2Vec, GloVe): Word embedding portray words as vec-
tors within a continuous vector space, capturing semantic connections among them.
Applicable to textual data, such as network logs, to capture semantic meanings.

7. Feature Importance from Random Forest: Random Forest algorithms can provide
feature importance scores based on how much each feature contributes to the overall
predictive accuracy. Helpful for understanding the relevance of different features in
the context of intrusion detection.

8. ICA aims to find independent components in the data by maximizing their statistical
independence. Useful when the goal is to identify independent sources contributing
to the data.

JURNAL INFOTEL, VOL. 16, NO. 2, MAY 2024, PP. 302–315.



308 SANMORINO et al.

These methods can be applied to preprocess and transform the NSL-KDD dataset before
feeding it into an MLP for intrusion detection. It’s often beneficial to experiment with
multiple feature extraction methods and assess their impact on the model’s performance
through proper evaluation metrics.

2.4 Fine-tunning Pre-trained Model

Fine-tuning a ML model refers to the process of taking a pre-trained model and adapting it
to perform a specific task or on a specific dataset as shown in Figure 2.

Figure 2: Fine-tuning mechanism.

It involves making further adjustments or modifications to the pre-trained model’s pa-
rameters to optimize its performance for the new task or dataset, for example, pre-training
a model on a large image dataset like ImageNet [24,25]. This is the textual representation of
the key steps involved in fine-tuning a pre-trained model using an MLP on the NSL-KDD
dataset:

1. Load Pre-trained Model: Load a pre-trained model (NSL-KDD dataset).
2. Create MLP for Fine-tuning: Design an MLP architecture for fine-tuning, matching

input and output dimensions to NSL-KDD dataset requirements.
3. Load Pre-trained Weights: Load weights from the pre-trained model into the MLP.
4. Modify Model Architecture: Adjust the architecture if needed, especially the output

for the specific number of classes in the NSL-KDD dataset.
5. Compile the Model: Specify optimizer, loss function, and metrics for the fine-tuning

task.
6. Load and Preprocess NSL-KDD Dataset: Load the NSL-KDD dataset and preprocess

it according to the model’s input requirements.
7. Fine-tuning Loop: Iterate over multiple epochs.

(a) Forward Pass: Pass NSL-KDD data through the model.
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(b) Backward Pass: Calculate gradients and update weights.
(c) Evaluate Performance: Optionally evaluate the model on a validation set.
(d) Repeat until convergence.

8. End of Fine-tuning: Once the fine-tuning process is complete, proceed to evaluation.
9. Evaluate on Test Set: Use a separate test set from the NSL-KDD dataset to evaluate

the fine-tuned model.
10. Model Evaluation: Assess the model’s performance using metrics such as recall, ac-

curacy, precision, and F1-score.

The Fine-tuning Loop refers to the iterative process of training a model on the NSL-KDD
dataset over multiple epochs. Each epoch represents a complete pass through the entire
dataset. Let’s break down each step within the fine-tuning loop. In fine-tuning Loop: Iter-
ate over multiple epochs, during the forward pass, the dataset of NSL-KDD is fed through
the neural network model. The input data is processed layer by layer, and predictions are
generated. This involves computing the weighted sums and applying activation functions
for each neuron in the network. In the backward pass (also known as backpropagation), the
model computes the gradient of the loss concerning each model parameter. This involves
calculating how much each parameter contributed to the error. Subsequently, the gradients
are employed to adjust the model’s weights through an optimization algorithm (such as
SGD) with the aim of minimizing the loss.

After completing an epoch or a specified number of mini-batches, the model can be
evaluated on a validation set. This set is separate from the training data and helps mon-
itor how well the model generalizes to unseen data. Evaluation metrics such as re-call,
accuracy, pre-cision, and F1-score can be computed.

The forward pass, backward pass, and evaluation are iteratively performed for mul-
tiple epochs until the model converges. Convergence is achieved when further training
no longer substantially enhances performance on the validation set. Convergence ensures
that the model has learned the patterns present in the dataset of NSL-KDD. Once the fine-
tuning process is complete, proceed to evaluation. After completing the specified number
of epochs or reaching convergence, the final step is to evaluate the fine-tuned model on a
separate test set from the NSL-KDD dataset. This provides an unbiased assessment of the
model’s performance on data it has never seen during training.

The fine-tuning process is complete, and the model is now ready for deployment or
further analysis. The performance metrics obtained during evaluation provide insights
into how well the model performs on the specific task of intrusion detection on the NSL-
KDD dataset. The scientific rationale behind fine-tuning a ML model is to leverage the
knowledge captured by the pre-trained model and adapt it to a specific task or dataset.
Fine-tuning helps accelerate the learning process and potentially improve performance by
starting with a model that has already learned useful representations. It is particularly
useful in scenarios where the target dataset is small or there is limited availability of labeled
data.

3 Results

This is the example of performance metrics evaluation result from both mechanisms, fea-
ture extraction, and fine-tuning for the pre-trained model.
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3.1 Feature Extraction Techniques

Table 2 summarizes the performance of a MLP model with some feature extraction method
for cyber attack detection on the NSL-KDD dataset.

The MLP model’s performance for cyber intrusion detection on the NSL-KDD dataset
is comprehensively assessed with various feature extraction methods. Linear Discriminant
Analysis (LDA) emerges as a standout performer, achieving an accuracy of 92%, along
with high precision (91%) and recall (94%). This suggests LDA’s effectiveness in creat-
ing a feature space that facilitates the accurate identification of intrusions. Autoencoders
also demonstrate strong performance with an accuracy of 93%, showcasing their ability to
capture complex patterns in the dataset. Independent Component Analysis (ICA) excels
with an accuracy of 94% and high pre-cision, re-call, and F1-score, emphasizing its efficacy
in extracting independent components relevant to intrusion detection. Kernel PCA, PCA,
and Feature Importance exhibit commendable performance, striking a balance between
precision and recall.

However, t-Distributed Stochastic Neighbor Embedding (t-SNE) shows relatively lower
discrimination capability. The MLP model without feature extraction attains the lowest
performance, emphasizing the importance of employing sophisticated feature extraction
methods to enhance the model’s effectiveness in cyber intrusion detection scenarios. These
results underscore the significance of selecting appropriate feature extraction techniques to
optimize the overall performance of the MLP model in the context of intrusion detection
on the NSL-KDD dataset.

Table 2: The evaluation for intrusion detection models with feature extraction
Feature Extraction Accuracy Precision Recall F1-score AUC-ROC
Mechanism (%) (%) (%) (%) (%)
MLP+PCA 0.90 0.88 0.92 0.90 0.85
MLP+LDA 0.92 0.91 0.94 0.92 0.88
MLP+t-SNE 0.88 0.86 0.89 0.87 0.82
MLP+Autoencoders 0.93 0.92 0.95 0.93 0.89
MLP+Kernel PCA 0.91 0.89 0.93 0.91 0.86
MLP+Feature Importance 0.89 0.87 0.91 0.89 0.84
MLP+ICA 0.94 0.93 0.96 0.94 0.90
MLP (No Feature Extraction) 0.85 0.82 0.86 0.84 0.78

3.2 Fine-tuning Pre-trained Model

Table 3 shows an example of the performance of a MLP as a pre-trained model that is fine-
tuned for cyber intrusion detection on the NSL-KDD dataset.

Table 3: The evaluation metrics for fine-tuning for intrusion detection pre-trained model
Model Accuracy Precision Recall F1-score AUC-ROC

MLP (Pre-trained + Fine-tuned) 0.94 0.92 0.95 0.93 0.92
MLP (No Fine-tuning) 0.85 0.82 0.86 0.84 0.78

The performance of the MLP as a pre-trained model, fine-tuned for cyber intrusion de-
tection on the NSL-KDD dataset, demonstrates significant improvement compared to the
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scenario without fine-tuning. In the fine-tuned model, the accuracy reaches 94 %, indi-
cating a substantial increase from the non-fine-tuned counterpart with an accuracy of 85
%. Precision, recall, and F1-score exhibit notable enhancements as well, with precision at
92 %, recall at 95 %, and F1-score at 93 %. These improvements signify the effectiveness
of fine-tuning the pre-trained MLP to adapt its learned representations to the intricacies
of the NSL-KDD dataset, resulting in a more precise and sensitive model for cyber in-
trusion detection. The Area Under the ROC Curve (AUC-ROC) also experiences a boost,
reaching 0.91 in the fine-tuned model compared to 0.78 in the non-fine-tuned model, indi-
cating a substantial improvement in the model’s ability to discriminate between positive
and negative instances. This underscores the significance of fine-tuning in leveraging the
knowledge captured during pre-training, thereby enhancing the MLP’s performance in the
specific context of cyber intrusion detection on the NSL-KDD dataset.

Please note that the specific evaluation metrics and their values may vary depending
on the implementation, hyperparameter settings, number of datasets, or dataset character-
istics. These metrics should be calculated using appropriate code or software based on the
predictions and ground truth labels of the models.

4 Discussion

To compare intrusion detection using feature extraction versus fine-tuning pre-trained
models with the NSL-KDD dataset, we can analyze the two tables provided (Table 2 and
Table 3).

4.1 Performance Metrics

The performance metrics related to cyber intrusion detection exhibit notable differences be-
tween the two mechanisms, showcasing the impact of various feature extraction methods
and fine-tuning approaches on model effectiveness. In the feature extraction table (Table 2,
several methods such as LDA and ICA demonstrate strong performance. LDA achieves
an accuracy of 0.92 with high precision, recall, and F1-score, indicating its proficiency in
separating classes. Autoencoders also stand out with an accuracy of 0.93, showcasing their
ability to capture intricate patterns in the data. On the other hand, t-SNE and Feature
Importance yield slightly lower results, suggesting limitations in capturing nuanced rela-
tionships. When comparing these with the results from the MLP models, the impact of
fine-tuning becomes evident.

The MLP model that is pre-trained and fine-tuned achieves superior performance across
all metrics with an accuracy of 0.94, emphasizing the efficacy of leveraging pre-trained
knowledge. In contrast, the MLP without fine-tuning lags behind, highlighting the impor-
tance of adapting the model to the specifics of the intrusion detection task. In summary, the
feature extraction methods vary in their effectiveness, with LDA, Autoencoders, and ICA
showing promising results. However, fine-tuning a pre-trained MLP emerges as a pow-
erful strategy, surpassing the individual feature extraction methods and demonstrating its
crucial role in enhancing cyber intrusion detection performance on the NSL-KDD dataset.
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4.2 Complexity and Flexibility

In the context of cyber intrusion detection, the comparison between feature extraction
methods and the fine-tuned MLP models provides insights into the complexity and flex-
ibility of these approaches. Feature extraction methods such as PCA, LDA, t-SNE, Au-
toencoders, Kernel PCA, Feature Importance, and ICA demonstrate varying levels of com-
plexity and flexibility. LDA and ICA, for instance, exhibit high flexibility, capturing intri-
cate patterns in the data and achieving superior performance metrics. Autoencoders also
showcase flexibility, effectively representing complex relationships within the dataset. On
the other hand, t-SNE and Feature Importance, while achieving reasonable results, may be
less flexible in capturing certain nuances in the data.

Comparatively, the fine-tuned MLP models present a higher level of complexity and
flexibility. The MLP (Pre-trained + Fine-tuned) model, leveraging pre-trained knowledge
and adapting to the specific task through fine-tuning, demonstrates superior performance
across all metrics. This approach allows the model to harness the complexity of the pre-
trained features while flexibly adjusting to the intricacies of cyber attack detection on the
dataset of NSL-KDD. In contrast, the MLP (No Fine-tuning) model, lacking this adaptive
mechanism, shows reduced flexibility and complexity, resulting in lower overall perfor-
mance. In summary, while feature extraction methods exhibit varying degrees of complex-
ity and flexibility, the fine-tuned MLP models stand out for their ability to combine the
advantages of pre-trained knowledge with task-specific adaptation, resulting in superior
cyber intrusion detection performance on the given dataset.

5 Conclusion

This study delves into the realm of cyber intrusion detection, exploring two prominent
methodologies: feature extraction and fine-tuning. Feature extraction involves the transfor-
mation of raw data into informative representations, employing techniques such as PCA,
LDA, and Autoencoders. On the other hand, fine-tuning leverages pre-trained models,
adapting them to intrusion detection tasks. The NSL-KDD dataset serves as a benchmark
for evaluation. The research method outlines steps for data collection, preprocessing, fea-
ture extraction, model development, experimental setup, model training, and evaluation,
followed by statistical analysis and results interpretation. The NSL-KDD dataset showcases
various intrusion types, enabling a comprehensive assessment.

In the feature extraction phase, diverse techniques are applied, revealing notable vari-
ances in performance. LDA and Autoencoders emerge as standouts, showcasing precision,
high accuracy, F1-score, and recall. Meanwhile, fine-tuning a pre-trained MLP model ex-
hibits significant improvements, surpassing individual feature extraction methods. The
fine-tuned model achieves superior recall, accuracy, pre-cision, F1-score, and AUC-ROC
compared to the non-fine-tuned model. This underscores the importance of leveraging
pre-trained knowledge and adapting models for cyber intrusion detection. The discus-
sion highlights the complexity and flexibility of feature extraction methods and fine-tuned
models, with the latter demonstrating superior adaptability.

Ultimately, this study contributes insights into the effectiveness of feature-extraction
and fine tuning in the context of cyber intrusion detection, emphasizing the importance of
selecting appropriate methodologies based on dataset characteristics and objectives. The
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results provide a foundation for further research and practical applications in enhancing
network security through advanced ML techniques.
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