Butterfly Image Classification using Convolution Neural Network with AlexNet Architecture

Main Article Content

Ainin Maftukhah
Abdul Fadlil
Sunardi Sunardi

Abstract

Kurangnya pengetahuan tentang kupu-kupu dapat menimbulkan masalah karena kupu-kupu berperan penting dalam ekosistem. Urgensi dalam penelitian ini terkait dengan bidang biologi yaitu klasifikasi citra kupu-kupu dapat membantu dalam memahami pola migrasi, pola kawin, dan pola perilaku kupu-kupu dalam interaksinya dengan lingkungan sekitarnya. Tujuan dari penelitian ini adalah untuk mengklasifikasikan spesies kupu-kupu. Dataset yang digunakan adalah dataset citra kupu-kupu sebanyak 5.499 dengan total 50 spesies. Metode yang diterapkan adalah convolution neural network (CNN) dengan arsitektur AlexNet. Proses pelatihan menggunakan arsitektur AlexNet diawali dengan input dataset citra, dataset akan diproses terlebih dahulu seperti resizing dan RGB to grayscale.Kemudian lakukan filter atau kernel. Output dari kernel digunakan untuk melakukan pooled convolution. Konvolusi dan pooling dilakukan sebanyak lima kali. Setiap hasil max pooling terakhir diratakan tiga kali untuk mengubah gambar berbentuk matriks menjadi tiga dimensi. Setelah itu, terhubung sepenuhnya. Tahap terakhir adalah citra dapat diklasifikasikan. Proses pengujian menggunakan arsitektur AlexNet diawali dengan input dataset citra, dilakukan preprocessing dataset seperti resizing dan RGB to grayscale. Kemudian dataset diklasifikasikan dengan arsitektur AlexNet CNN. Setelah itu dilakukan evaluasi model, dan terakhir adalah hasil klasifikasi citra kupu-kupu.Hasil klasifikasi diperoleh akurasi sebesar 80% dengan resize 100x100, 82% dengan resize 150x150, dan 82% dengan resize 200x200. Setiap hasil max pooling terakhir diratakan tiga kali untuk mengubah gambar berbentuk matriks menjadi tiga dimensi. Setelah itu, terhubung sepenuhnya. Tahap terakhir adalah citra dapat diklasifikasikan. Proses pengujian menggunakan arsitektur AlexNet diawali dengan input dataset citra, dilakukan preprocessing dataset seperti resizing dan RGB to grayscale. Kemudian dataset diklasifikasikan dengan arsitektur AlexNet CNN. Setelah itu dilakukan evaluasi model, dan terakhir adalah hasil klasifikasi citra kupu-kupu.Hasil klasifikasi diperoleh akurasi sebesar 80% dengan resize 100x100, 82% dengan resize 150x150, dan 82% dengan resize 200x200. Setiap hasil max pooling terakhir diratakan tiga kali untuk mengubah gambar berbentuk matriks menjadi tiga dimensi. Setelah itu, terhubung sepenuhnya. Tahap terakhir adalah citra dapat diklasifikasikan. Proses pengujian menggunakan arsitektur AlexNet diawali dengan input dataset citra, dilakukan preprocessing dataset seperti resizing dan RGB to grayscale. Kemudian dataset diklasifikasikan dengan arsitektur AlexNet CNN. Setelah itu dilakukan evaluasi model, dan terakhir adalah hasil klasifikasi citra kupu-kupu.Hasil klasifikasi diperoleh akurasi sebesar 80% dengan resize 100x100, 82% dengan resize 150x150, dan 82% dengan resize 200x200. Tahap terakhir adalah citra dapat diklasifikasikan. Proses pengujian menggunakan arsitektur AlexNet diawali dengan input dataset citra, dilakukan preprocessing dataset seperti resizing dan RGB to grayscale. Kemudian dataset diklasifikasikan dengan arsitektur AlexNet CNN. Setelah itu dilakukan evaluasi model, dan terakhir adalah hasil klasifikasi citra kupu-kupu. Hasil klasifikasi diperoleh akurasi sebesar 80% dengan resize 100x100, 82% dengan resize 150x150, dan 82% dengan resize 200x200. Tahap terakhir adalah citra dapat diklasifikasikan.Proses pengujian menggunakan arsitektur AlexNet diawali dengan input dataset citra, dilakukan preprocessing dataset seperti resizing dan RGB to grayscale. Kemudian dataset diklasifikasikan dengan arsitektur AlexNet CNN. Setelah itu dilakukan evaluasi model, dan terakhir adalah hasil klasifikasi citra kupu-kupu. Hasil klasifikasi diperoleh akurasi sebesar 80% dengan resize 100x100, 82% dengan resize 150x150, dan 82% dengan resize 200x200. dan hasil terakhir pengklasifikasian citra kupu-kupu. Hasil klasifikasi diperoleh akurasi sebesar 80% dengan resize 100x100, 82% dengan resize 150x150, dan 82% dengan resize 200x200. dan hasil terakhir pengklasifikasian citra kupu-kupu.Hasil klasifikasi diperoleh akurasi sebesar 80% dengan resize 100x100, 82% dengan resize 150x150, dan 82% dengan resize 200x200.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
A. Maftukhah, A. Fadlil, and S. Sunardi, “Butterfly Image Classification using Convolution Neural Network with AlexNet Architecture”, INFOTEL, vol. 16, no. 1, pp. 82-95, Feb. 2024.
Section
Informatics