Topic Sentiment Using Logistic Regression and Latent Dirichlet Allocation as a Customer Satisfaction Analysis Model
Main Article Content
Abstract
Buying and selling goods now is more interesting through e-commerce or marketplaces because of the ease of carrying out online transactions. Each transaction usually generates a response from the customer. The transaction response on the Shopee platform is still in paragraph form and needs to be more specific. Therefore, this research aims to build a model analysis of customer satisfaction using the best algorithm between support vector machine (SVM), random forest, and logistic regression. This research method uses sentiment classification with logistic regression because the logistic regression algorithm has the best accuracy, with an accuracy of 90.5. Meanwhile, the SVM algorithm achieved an accuracy of 90.4, and random forest reached 90.2. The three algorithms were tested three times, splitting data train:test at 80:20, 70:30, and 60:40. The best results were obtained by splitting data at 60:40. The best model is used to predict data without labels. The prediction produces 12,844 positive sentiment comment data, 112 negative sentiment comment data, and 70 neutral sentiment comment data. The results of this research continued to topic modeling using latent dirichlet allocation (LDA) to generate a trending topic of customer satisfaction on sales products. Implications of discussing each trend topic can be used as a reference for improving products and services, especially in communicating with customers.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work