In-Depth Exploration and Comparison of Machine Learning Performances for Early-Stage Diabetes Risk Prediction
Main Article Content
Abstract
Abstract — Diabetes mellitus is distinguished by an inability of the human system to produce insulin on an ongoing basis, as well as by the inefficient utilization of the insulin hormone, resulting in an elevated level of blood glucose. Global diabetes rates have nearly doubled since 1980, reaching 9.3% among adults. Alarmingly, of the 463 million individuals with diabetes, 50.1% are unaware of their condition. Indonesia ranks seventh globally with 10.7 million diabetes cases. In 2019, it was fifth globally for adults (20–79 years) with undiagnosed diabetes. This silent epidemic demands urgent attention and comprehensive strategies for early detection and management. In recent years, researchers have increasingly studied machine learning for early diabetes recognition. In this study, we aim to predict early-stage diabetes risk by utilizing 16 health condition features. We explore 12 distinct machine learning algorithms, applying a hyperparameter grid to tune each algorithm. This involves systematically testing combinations of hyperparameters to identify the optimal settings for achieving the most accurate and reliable predictive models. The results indicate that the Light GBM algorithm achieved the highest accuracy of 0.9692. By contrast, the logistic regression and Naive Bayes algorithms demonstrated the lowest performance, each with an accuracy of 0.8923. The implications of these results underline the capability of employing machine learning algorithms to precisely and effectively detect individuals susceptible to diabetes, enabling the implementation of individualized healthcare approaches.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work