Development of a Prediction Model for Potential Forest and Land Fires using Machine Learning Algorithms Based on Patrol Data
Main Article Content
Abstract
Indonesia allocates 120 million hectares or 64% of its land area as forest areas. Indonesia's forests continue to experience deforestation; one of the causes is forest and land fires (karhutla). The government conducts forest and land fire prevention through integrated patrols with the Forest and Land Fire Prevention Patrol Information System (SIPP Karhutla) facility for patrol data management. However, the patrol data are still primarily used for data observation and simple spatial analysis in the spatial module. Patrol data has not been used for further forest and land fire prevention studies. Based on these problems, this research aims to build a prediction model of potential forest and land fires using SVM, Random Forest, and XGBoost algorithms and compare model performance to get the best model. The preprocessing stage uses the SMOTE-ENN method to handle data class imbalance, and the k-fold cross-validation stage and hyperparameter tuning use the random search method. The confusion matrix evaluation method to see the model performance in terms of accuracy is XGBoost (94.81%), Random Forest (90.23%), SVM-linear (79.58%), SVM-polynomial model (73.99%), SVM-rbf (74.26%), and SVM-sigmoid (35.04%). Therefore, the best prediction model is XGBoost (94.81%) with boosting technique. The results of this study have implications for helping early prevention of forest and land fires on the islands of Sumatra and Kalimantan.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work