Rupiah Banknotes Detection Comparison of The Faster R-CNN Algorithm and YOLOv5

Main Article Content

Muhammad Zuhdi Hanif
Wahyu Andi Saputra
Yit Hong Choo
Andi Prademon Yunus

Abstract

Money is an essential part of human life. Humans are never separated from activities related to money. As time goes by, money is not only a means of transactions between humans but also between humans and machines. Machines can recognize money in various ways, including object detection. Object detection is one of the most popular branches of computer vision. There are many methods for carrying out object detection, such as Faster R-CNN and YOLO. Faster R-CNN has been widely used in various fields to perform object detection tasks. Faster R-CNN has advantages over its predecessor because it uses a Region Proposal Network (RPN) as a substitute for selective search, which requires less compilation time. YOLO (You Only Look Once) is the most frequently used object detection method. This method divides the image into grids; each part of the grid predicts objects and their probabilities. The main advantages of YOLO are its high speed and ability to recognize objects in various conditions and positions with reasonably high accuracy. This research compares the Faster R-CNN algorithm model using the ResNet-50 architecture with YOLOv5 to recognize rupiah banknotes. The dataset used is 1120 images consisting of 8 classes. The YOLOv5 model trained on RGB data had the best results, with calculation accuracy reaching 1. Test results on three images also showed suitable results. The hope is that this research can be applied in other research to build a system for recognizing rupiah banknotes.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
M. Hanif, W. Saputra, Y. Choo, and A. Yunus, “Rupiah Banknotes Detection Comparison of The Faster R-CNN Algorithm and YOLOv5”, INFOTEL, vol. 16, no. 3, pp. 502–517, Aug. 2024.
Section
Informatics

References

[1] Y. Banusu and A. Firmanto, “Kebahagiaan dalam ruang keseharian manusia. forum,
49 (2), 51–61,” 2020.
[2] W. Hamidah, T. S. B. Irawan, N. A. P. Hasbullah, and A. B. Kaswar, “Deteksi nominal
uang kertas menggunakan ocr (optical character recognition),” Techno Xplore: Jurnal
Ilmu Komputer dan Teknologi Informasi, vol. 7, no. 2, pp. 72–76, 2022.
[3] M. A. Mulya, Z. Arif, et al., “Tinjauan pustaka sistematis: Penerapan metode gabor
wavelet pada computer vision,” Journal Of Computer Science And Technology (JOC-
STEC), vol. 1, no. 2, pp. 83–88, 2023.
[4] P. R. Aningtiyas, A. Sumin, and S. Wirawan, “Pembuatan aplikasi deteksi objek meng-
gunakan tensorflow object detection api dengan memanfaatkan ssd mobilenet v2 se-
bagai model pra-terlatih: Array,” Jurnal Ilmiah Komputasi, vol. 19, no. 3, pp. 421–430,
2020.
[5] C. Rahmad, K. ST M, M. P. Rawansyah, and T. K. Rochastu, “Object detection system
sebagai alat bantu mendeteksi objek sekitar untuk penyandang tunanetra.,” 2019.
[6] Y. Rizki, R. M. Taufiq, H. Mukhtar, and D. Putri, “Klasifikasi pola kain tenun melayu
menggunakan faster r-cnn,” IT Journal Research and Development, vol. 5, no. 2, pp. 215–
225, 2021.
[7] G. Thiodorus, A. Prasetia, L. A. Ardhani, and N. Yudistira, “Klasifikasi citra
makanan/non makanan menggunakan metode transfer learning dengan model resid-
ual network,” Teknologi: Jurnal Ilmiah Sistem Informasi, vol. 11, no. 2, pp. 74–83, 2021.
[8] D. Suyanto, K. N. Ramadhani, and S. Mandala, “Deep learning modernisasi machine
learning untuk big data,” Informatika, 2019.
[9] B. M. Sujatmiko, E. Yudaningtyas, and P. M. Raharjo, “Convolution neural network
dengan desain jaringan resnet sebagai metode klasifikasi tumor kulit,” Jurnal Simantec,
vol. 11, no. 1, pp. 53–64, 2022.
[10] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified,
real-time object detection,” 2016.
https://ejournal.ittelkom-pwt.ac.id/index.php/infotel
[11] A. N. Sugandi and B. Hartono, “Implementasi pengolahan citra pada quadcopter un-
tuk deteksi manusia menggunakan algoritma yolo,” in Prosiding Industrial Research
Workshop and National Seminar, vol. 13, pp. 183–188, 2022.
[12] F. Charli, H. Syaputra, M. Akbar, S. Sauda, and F. Panjaitan, “Implementasi metode
faster region convolutional neural network (faster r-cnn) untuk pengenalan jenis bu-
rung lovebird,” Journal of Information Technology Ampera, vol. 1, no. 3, pp. 185–197,
2020.
[13] K. M. Azhar, I. Santoso, and Y. A. A. Soetrisno, “Implementasi deep learning menggu-
nakan metode convolutional neural network dan algoritma yolo dalam sistem pende-
teksi uang kertas rupiah bagi penyandang low vision,” Transient: Jurnal Ilmiah Teknik
Elektro, vol. 10, no. 3, pp. 502–509, 2021.
[14] M. M. Ibrahim, R. Rahmadewi, and L. Nurpulaela, “Pendeteksian nominal uang
pada gambar menggunakan convolutional neural network: Integrasi metode pra-
pemrosesan citra dan klasifikasi berbasis cnn,” JATI (Jurnal Mahasiswa Teknik Infor-
matika), vol. 7, no. 2, pp. 1394–1400, 2023.
[15] N. Alfiyah, “Rupiah Banknotes — kaggle.com.” https://www.kaggle.com/datasets/
nurulalfiyyah/rupiah-banknotes, 2022.
[16] M. Muhathir, M. H. Santoso, and R. Muliono, “Analysis naã ̄ ve bayes in classifying
fruit by utilizing hog feature extraction,” Journal of Informatics and Telecommunication
Engineering, vol. 4, no. 1, pp. 151–160, 2020.
[17] M. F. Rahman and B. Bambang, “Deteksi sampah pada real-time video menggunakan
metode faster r-cnn,” Applied Technology and Computing Science Journal, vol. 3, no. 2,
pp. 117–125, 2020.
[18] S. Suprihanto, I. Awaludin, M. Fadhil, and M. A. Z. Zulfikor, “Analisis kinerja resnet-
50 dalam klasifikasi penyakit pada daun kopi robusta,” J. Inform, vol. 9, no. 2, pp. 116–
122, 2022.
[19] F. Nashrullah, S. A. Wibowo, and G. Budiman, “Investigasi parameter epoch pada
arsitektur resnet-50 untuk klasifikasi pornografi,” Journal of Computer, Electronic, and
Telecommunication, vol. 1, no. 1, pp. 1–8, 2020.
[20] Y. Zhang, Z. Guo, J. Wu, Y. Tian, H. Tang, and X. Guo, “Real-time vehicle detection
based on improved yolo v5,” Sustainability, vol. 14, no. 19, p. 12274, 2022.
[21] B. A. S. C. L. Manikandan, Rapelli Malavika, “Object detection using yolo v5,” Euro-
pean Chemical Bulletin, 2023.
[22] “Overview of model structure about yolov5.” https://github.com/ultralytics/yolov5/
issues/280, 2020. [Accessed 07-06-2024].
[23] Liu, Shenghua, Jamieson, Nathan, Lannon, Kevin, Mohrman, Kelci, Negash, Sirak,
Wan, Yuyi, and Yates, Brent, “Using a neural network to approximate the negative log
likelihood function,” EPJ Web of Conf., vol. 295, p. 09041, 2024.
[24] M. Dandi Darojat, Convolutional Neural Network Untuk Klasifikasi Citra Makanan Khas
Indonesia. PhD thesis, Universitas Brawijaya, 2021..