Improving the Accuracy of Concrete Mix Type Recognition with ANN and GLCM Features Based on Image Resolution
Main Article Content
Abstract
Concrete is an essential construction material that is often used due to its strength and durability, but its mix type identification often relies on conventional methods that are less efficient and accurate. This research aims to evaluate the effect of image resolution on the accuracy of concrete mix type recognition using Artificial Neural Network (ANN) and Gray-Level Co-Occurrence Matrix (GLCM) features. The method used involves analysing concrete images at various resolutions: 200 x 200, 300 x 300, 400 x 400, 500 x 500, 600 x 600, and 700 x 700 pixels. The experimental results show that higher image resolutions tend to improve recognition accuracy. all types of image sizes using 1,250 training data and 250 test data. Image sizes of 200 x 200 and 300 x 300 pixels give low accuracy of 42% and 45% respectively, while sizes of 400 x 400 and 500 x 500 pixels show an increase in accuracy to 60.5% and 62.5%. The higher resolutions of 600 x 600 and 700 x 700 pixels produced the highest accuracy of 68% and 70%, respectively. These results indicate that larger image resolutions are able to capture more details and characteristics required for more accurate concrete mix type recognition. This research has implications for improving efficiency and consistency in concrete inspection in the construction industry through the use of AI-based image recognition methods.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work