Identifikasi Telapak Tangan menggunakan Jaringan Syaraf Tiruan Learning Vector Quantization (LVQ)
Main Article Content
Abstract
Sistem pengenalan diri (personal recognition) adalah sebuah sistem untuk mengenali identitas seseorang secara otomatis dengan menggunakan computer dengan kata sandi (password), ID card, atau PIN untuk mengidentifikasi seseorang. Namun,pengenalan diri dengan sistem tersebut memiliki beberapa kelemahan yaitu dapat dicuri dan mudah diduplikasi, memiliki kemungkinan seseorang untuk lupa dan beberapa password dapat diperkirakan sehingga dapat dimanfaatkan oleh orang-orang yang tidak bertanggungjawab. Untuk dapat mengenali seseorang secara otomatis dapat dilakukan secara komputasi, yaitu dengan menggunakan jaringan syaraf tiruan. Penelitian ini mengimplementasikan metode jaringan syaraf tiruan Learning Vector Quantization dengan objek pengenalan yaitu telapak tangan. Dalam penelitian ini model proses pengembangan perangkat lunak yang digunakan adalah Waterfall, sedangkan bahasa pemrograman yang digunakan adalah Matlab, dan sistem manajemen basis datanya adalah Microsoft Access. Keluaran dari aplikasi yang dikembangkan adalah identifikasi telapak tangan user. Dari hasil pengujian, tingkat akurasi dari aplikasi ini sebesar 74,66% dalam membedakan antar user yang satu dengan yang lain.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
References
[2] Elizabeth, Pengembangan Sistem Identifikasi Biometrika Wajah Menggunakan Metode Neural Network dan Pattern Matching. Universitas Indonesia, 2006.
[3] P. Tsa, et al., "Adaptive multiple experts system for personal identification using facial behaviour biometrics," 2008 IEEE 10th Workshop on Multimedia Signal Processing, MMSP 2008; Cairns, QLD; Australia, pp. 660-665, October 2008.
[4] A. Mahmood, et al., "Artificially intelligent recognition of Arabic speaker using voice print-based local features," Journal of Experimental and Theoretical Artificial Intelligence, Vol. 28, Issue 6, pp. 1009-1020, 2016.
[5] H.S. Bae, H.J. Lee and S.G. Lee, "Voice recognition-based on adaptif MFCC and deep learning for embedded system," Journal of Institute of Control, Robotic and System, Vol. 22, Issue 10, pp. 797-902, 2016.
[6] Ranny, "Voice recognition using k nearest neighbor and double distance method," 3rd International Conference on Industrial Engineering, Management Science and Applications, ICIMSA 2016; Jeju Island, South Korea, May 2016.
[7] J. Rianto, Perangkat Lunak Pengenalan Suara (Voice Rocognition) untuk Absensi Karyawan dengan Menggunakan Metode Dynamic Time Warping. Universitas Komputer Indonesia, 2011.
[8] D. Aishwarya, M. Gowri, and R.K Saranya, "Palm print recognition using liveness detection technique," 2nd International Conference on Science Technology Engineering and Management, ICONSTEM 2016, Chennai India, pp. 109-114, September 2016
[9] K.B. Ray and R. Misra, "Palm Print Recognition Using Hough Transforms," 7th International Conference on Computational Intelligence and Communication Networks, CICN 2015, Jabalpur India, pp. 422-425, Desember 2015.
[10] L.A.P. Neves, et al., "Hand recognition using texture histograms: A proposed technique for image acquisition and recognitionof the human palm," 9th International Conference on Computer Vision Theory and Applications, VISAPP 2014, Lisbon, Portugal, Vol. 3, pp. 180-185, Januari 2041.
[11] P.A. Wibawa, B.W.T. Agung and F. Sthevanie, "Palm print recognition using competitive hand valley detection, local binary pattern and probabilistic neural network," 2014 International Conference on Information Technology Systems and Innovation, ICITSI 2014; Bandung – Bali, Indonesia, pp. 105-110, 24 November 2014.
[12] R. Munir, Pengolahan Citra Digital dengan Pendekatan Algoritmik. Bandung: Penerbit Informatika, 2004.
[13] J.J. Siang, Jaringan Syaraf Tiruan dan Pemrogramannya Menggunakan Matlab. Yogyakarta: Penerbit ANDI, 2009.