Object Detection of Hospital Assets Using Computer Vision with Generative Adversarial Networks Method
Main Article Content
Abstract
Hospital asset monitoring systems encounter significant challenges in managing partially occluded medical equipment, which affects inventory management and operational efficiency. Conventional object detection methods have shown limitations in accurately detecting occluded medical equipment, potentially leading to asset management inefficiencies. This study presents an integrated framework that combines Generative Adversarial Networks (GAN) inpainting with YOLOv8 to improve the detection accuracy of partially occluded medical equipment. The proposed system was evaluated using three distinct training configurations of 500, 750, and 1000 epochs on a comprehensive medical equipment dataset. The experimental results indicate that the 1000-epoch GAN model demonstrated superior reconstruction performance, achieving a Peak Signal-to-Noise Ratio (PSNR) of 39.68 dB, Structural Similarity Index Measure (SSIM) of 0.9910, and Mean Squared Error (MSE) of 7.0030. Furthermore, the integrated YOLOv8-GAN framework maintained robust detection performance with an F1-score of 0.933, comparable to the 0.938 achieved with unoccluded original images. The detection confidence scores exhibited improvement at higher epochs, ranging from 0.824 to 0.861, suggesting enhanced performance with extended training duration. The findings demonstrate that the integration of GAN inpainting with YOLOv8 effectively enhances occluded object detection in hospital environments, offering a viable solution for improved asset monitoring systems.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work