Lokal Fuzzy Thresholding Berdasarkan Pengukuran Fuzzy Similarity Pada Interaktif Segmentasi Citra Panoramik Gigi
Main Article Content
Abstract
Dalam segmentasi citra, thresholding merupakan salah metode yang mudah dan sederhana untuk diimplementasikan. Pada citra panoramik gigi, penentuan global threshold masih kurang begitu optimal untuk diimplementasikan. Hal tersebut dikarenakan adanya factor penghambat seperti pencahayaan yang tidak merata dan citra yang kabur. Faktor-faktor tersebut dapat menyebabkan histogram tidak bisa dipartisi dengan baik, sehingga akan berpengaruh pada hasil segmentasi. Pada penelitian ini diusulkan lokal fuzzy thresholding berdasarkan pengukuran fuzzy similarity pada interaktif segmentasi citra panoramik gigi. Metode yang diusulkan terdiri dari tiga tahapan utama, tahap pertama region splitting untuk mendapatkan lokal region. Tahap kedua adalah user marking untuk mendapat inisial seed background dan objek, Tahap terakhir adalah pengukuran fuzzy similarity pada setiap lokal region untuk mendapatkan nilai lokal threshold. Hasil uji coba pada citra panoramik gigi, metode yang diusulkan berhasil melakukan segmentasi dengan rata-rata missclasification error (ME) 5.47%.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
References
[2] Y. Y. Amer and M. J. Aqel, "An Efficient Segmentation Algorithm for Panoramic Dental Images," Procedia - Procedia Comput. Sci., vol. 65, no. Iccmit, pp. 718–725, 2015.
[3] M. Niswar and A. Aman, "Sistem Pendeteksi Kesegaran Ikan Bandeng Menggunakan Citra," J. Infotel, vol. 8, no. 2, pp. 170–179, 2016.
[4] D. A. Forsyth and Ponce J., "Computer Vision: A Modern Approach," Prentice Hall, 2002.
[5] T. Pavlidis, Structural Pattern Recognition. Springer-Verlag Berlin Heidelberg, 1977.
[6] T. N. A. Nguyen, J. Cai, J. Zheng, and J. Li, "Interactive object segmentation from multi-view images," J. Vis. Commun. Image Represent., vol. 24, no. 4, pp. 477–485, 2013.
[7] K. Haris, S. N. Efstratiadis, N. Maglaveras, and A. K. Katsaggelos, "Hybrid image segmentation using watersheds and fast region merging," IEEE Trans. Image Process., vol. 7, no. 12, pp. 1684–1699, 1998.
[8] H. Yao, Q. Duan, D. Li, and J. Wang, "An improved K-means clustering algorithm for fish image segmentation," Math. Comput. Model., vol. 58, no. 3–4, pp. 790–798, 2013.
[9] G. Friedland, K. Jantz, and R. Rojas, "SIOX: Simple interactive object extraction in still images," Proc. - Seventh IEEE Int. Symp. Multimedia, ISM 2005, vol. 2005, pp. 253–259, 2005.
[10] J. Ning, L. Zhang, D. Zhang, and C. Wu, "Interactive image segmentation by maximal similarity based region merging," Pattern Recognit., vol. 43, no. 2, pp. 445–456, 2010.
[11] Y. Y. Boykov, "Interactive Graph Cuts for Optimal Boundary & Region Segmentation of Objects in N-D Images," Comput. Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE Int. Conf., no. July, pp. 105–112, 2001.
[12] R. Adams and L. Bischof, "Seeded region growing," IEEE Trans. Pattern Anal. Mach. Intell., vol. 16, no. 6, pp. 641–647, 1994.
[13] P. Salembier and L. Garrido, "Binary partition tree as an efficient representation for image processing, segmentation, and information retrieval," IEEE Trans. Image Process., vol. 9, no. 4, pp. 561–576, 2000.
[14] K. McGuinness and N. E. O’Connor, "A comparative evaluation of interactive segmentation algorithms," Pattern Recognit., vol. 43, no. 2, pp. 434–444, 2010.
[15] S. Aja-Fernández, A. H. Curiale, and G. Vegas-Sánchez-Ferrero, "A local fuzzy thresholding methodology for multiregion image segmentation," Knowledge-Based Syst., vol. 83, no. 1, pp. 1–12, 2015.
[16] N. Otsu, "A threshold selection method from gray-level histograms," IEEE Trans. Syst. Man. Cybern., vol. 9, no. 1, pp. 62–66, 1979.
[17] O. J. Tobias and R. Seara, "Image segmentation by histogram thresholding using fuzzy sets," IEEE Trans. Image Process., vol. 11, no. 12, pp. 1457–1465, 2002.
[18] N. V. Lopes, P. A. Mogadouro, H. Bustince, and P. Melo-pinto, "Using Fuzzy Measures," Image (Rochester, N.Y.), vol. 19, no. 1, pp. 199–204, 2010.
[19] D. Comaniciu, P. Meer, and S. Member, "Mean Shift?: A Robust Approach Toward Feature Space Analysis," IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 5, pp. 603–619, 2002.
[20] M. Jian and C. Jung, "Interactive Image Segmentation Using Adaptive Constraint Propagation," vol. 25, no. 3, pp. 1301–1311, 2016.
[21] L. a. Zadeh, "Fuzzy sets," Inf. Control, vol. 8, no. 3, pp. 338–353, 1965.
[22] L. Liu, W. Tao, J. Liu, and J. Tian, "A variational model and graph cuts optimization for interactive foreground extraction," Signal Processing, vol. 91, no. 5, pp. 1210–1215, 2011.
[23] G. Q. O. Pratamasunu et al., "Image Thresholding Based on Index of Fuzziness and Fuzzy Similarity Measure," Comput. Intell. Appl. (IWCIA), 2015 IEEE 8th Int. Work., vol. 8, pp. 161–166, 2015.
[24] A. Z. Arifin and A. Asano, "Image Thresholding by Measuring The Fuzzy Sets," Proc. Inf. dan Technol. Semin., pp. 189–194, 2005.