Seeded Region Growing pada Ruang Warna HSI untuk Segmentasi Citra Ikan Tuna

Main Article Content

Wanvy Arifha Saputra
Agus Zainal Arifin

Abstract

Citra ikan tuna sebelum masuk tahapan klasifikasi, harus memiliki hasil segmentasi yang baik. Hasil segmentasi yang baik adalah objek dan background terpisah dengan jelas. Citra ikan tuna yang memiliki sebaran cahaya yang tidak merata dan memiliki tekstur yang kompleks akan menghasilkan kesalahan segmentasi. Salah satu metode segmentasi pada citra adalah seeded region growing dan parameter yang digunakan hanya dua yaitu seed dan threshold. Penelitian ini mengusulkan metode seeded region growing pada ruang warna HSI untuk segmentasi citra ikan tuna. Ruang warna RGB (red green blue) pada citra ikan tuna ditransformasikan kedalam ruang warna HSI (hue saturasi intesitas) yang kemudian hanya ruang hue untuk dijadikan segmentasi dengan menggunakan seeded region growing. Penentuan parameter seed dan threshold dilakukan secara manual dan hasil dari segmentasi tersebut dilakukan refinement dengan morfologi matematika. Pengujian dilakukan sebanyak 30 citra dan metode evaluasi hasil segmentasi menggunakan RAE (relative foreground area error), MAE (missclassification error) dan MHD (modified Hausdroff distance). Citra ikan tuna berhasil dilakukan segmentasi dengan dibuktikan nilai RAE, ME dan MHD secara berturut adalah 5,40%, 1,53% dan 0,41%.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
W. Saputra and A. Arifin, “Seeded Region Growing pada Ruang Warna HSI untuk Segmentasi Citra Ikan Tuna”, INFOTEL, vol. 9, no. 1, pp. 56-63, Feb. 2017.
Section
Articles

References

[1] Widiastuti, I., & Putro, S. (2014). "Analisis Mutu Ikan Tuna Selama Lepas Tangkap". Maspari Journal, 1(1), 22-29.
[2] Azhar, R., Arifin, A. Z., & Khotimah, W. N. (Juni 2016). "Integrasi Density-Based Clustering dan HMRF-RM Pada Ruang Warna HSI untuk Segmentasi Citra Ikan Tuna". Jurnal Inspiration, 6(1).
[3] Indrabayu, I., Niswar, M., & Aman, A. A. (November 2016). "Sistem Pendeteksi Kesegaran Ikan Bandeng Menggunakan Citra". JURNAL INFOTEL. 8(2). 170-179.
[4] Dutta, M. K., Sengar, N., Kamble, N., Banerjee, K., Minhas, N., & Sarkar, B. (2016). "Image Processing Based Technique for Classification of Fish Quality After Cypermethrine Exposure". LWT-Food Science and Technology, 68, 408-417.
[5] Dutta, M. K., Issac, A., Minhas, N., & Sarkar, B. (2016). "Image Processing Based Method to Assess Fish Quality and Freshness". Journal of Food Engineering, 177, 50-58.
[6] Yao, H., Duan, Q., Li, D., & Wang, J. (2013). "An Improved K-means Clustering Algorithm for Fish Image Segmentation". Mathematical and Computer Modelling, 58(3), 790-798.
[7] Zhao, Y. Q., Wang, X. H., Wang, X. F., & Shih, F. Y. (2014). "Retinal Vessels Segmentation Based on Level Set and Region Growing". Pattern Recognition, 47(7), 2437-2446.
[8] Al-Faris, A. Q., Ngah, U. K., Isa, N. A., & Shuaib, I. L. (Oktober 2013). "Computer-Aided Segmentation System for Breast MRI Tumour using Modified Automatic Seeded Region Growing (BMRI-MASRG)". Journal of digital imaging, 27(1), 133-144.
[9] Gonzalez, R. C., & Woodz, R. E. (2007). "Digital Image Processing 3rd Edition". Upper Saddle River, New Jersey, USA: Prentice-Hall, Inc.
[10] Adams, R., & Bischof, L. (1994). "Seeded Region Growing". IEEE Transactions on pattern analysis and machine intelligence, 16(6), 641-647.