Identifikasi Tanda Tangan Berdasarkan Grid Entropy Menggunakan Multi Layer Perceptron
Main Article Content
Abstract
Tanda tangan merupakan salah satu bukti pengesahan dokumen yang sering digunakan. Pentingnya mengenal bentuk tanda tangan seseorang diperlukan untuk melakukan verifikasi terhadap dokumen apakah benar yang memberikan tanda tangan adalah orang yang bersangkutan atau orang lain. Pada penelitian ini penulis mendesain sistem identifikasi tanda tangan dengan fitur yang digunakan adalah nilai entropy yang diambil dari grid image (sub-citra) suatu citra tanda tangan. Model pelatihan dan pengujian menggunakan multi layer perceptron dan cross validation dengan tiga ukuran grid (4x4, 8x8, dan 16x16) dan dua jenis representasi citra (citra biner dan citra outline). Hasil pengujian terbaik adalah untuk pengujian ukuran grid sebanyak 8x8 dan menggunakan citra outline yaitu dengan tingkat akurasi sebesar 97.78%, nilai korelasi 0.981, dan nilai kappa 0.977.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
References
[2] S. Marsland, Machine Learning; An Algorithmic Perspective. CRC Press, 2009.
[3] A. Hayatunnufus, Andrizal, and D. Yendri, "Pendeteksi dan verifikasi tanda tangan menggunakan metode image domain spasial," Universitas Andalas, 2014.
[4] F. Damayanti and W. Setiawan, "Pengenalan Tanda Tangan Dengan Metode Modified Direction Feature ( Mdf ) Dan Euclidean Distance," in Prosiding Conference on Smart-Green Technology in Electrical and Information Systems, 2013, pp. 277–282.
[5] E. Utami and R. Wulanningrum, "Penggunaan Principal Component Analysis dan Euclidean Distance untuk Identifikasi Citra Tanda Tangan," IPTEKKOM, vol. 16, no. 1, pp. 1–16, 2016.
[6] J. Arifin and M. Z. Naf'an, "Verifikasi Tanda Tangan Asli Atau Palsu Berdasarkan Sifat Keacakan (Entropy)," J. INFOTEL, vol. 9, no. 1, 2017.
[7] N. Otsu, "A Threshold Selection Method from Gray-Level Histograms," IEEE Trans. Syst. Man. Cybern., vol. 9, no 1, pp. 62–66, 1979.
[8] J. Arifin and H. A. Nugroho, "Identifikasi dan Klasifikasi Pola Sinyal EKG Berdasarkan Sifat Keacakan (Entropy)," in Conference on Information Technology and Electrical Engineering (CITEE), 2013.
[9] M. Cheriet, N. Kharma, C.-L. Liu, and C. Y. Suen, Character Recognition Systems: a Guide for Students and Practitioners. John Wiley & Sons, Inc., 2007.
[10] L. G. Hafemann, R. Sabourin, and L. S. Oliveira, "Offline Handwritten Signature Verification - Literature Review," CoRR, pp. 1–18, 2015.
[11] Suyanto, Artificial Intelligence, 2nd ed. Bandung: Penerbit Informatika, 2014.
[12] R. C. Gonzales and R. E. Woods, Digital Image Processing, 3rd ed. New jersey: Pearson Prentice Hall, 2008.