Machine Learning Untuk Estimasi Posisi Objek Berbasis RSS Fingerprint Menggunakan IEEE 802.11g Pada Lantai 3 Gedung JTETI UGM

Main Article Content

Chairani Chairani
Widyawan Widyawan
Sri Suning Kusumawardani

Abstract

Penelitian ini membahas tentang estimasi posisi (localization) objek dalam gedung menggunakan jaringan wireless atau IEEE 802.11g dengan pendekatan Machine Learning. Metode pada pengukuran RSS menggunakan RSS-based fingerprint.  Algoritma Machine Learning yang digunakan dalam memperkirakan lokasi dari pengukuran RSS-based menggunakan Naive Bayes.  Localization dilakukan pada lantai 3 gedung Jurusan Teknik Elektro dan Teknologi Informasi (JTETI) dengan luas 1969,68 m2 dan memiliki 5 buah titik penempatan access point (AP). Untuk membentuk peta fingerprint digunakan dimensi 1 m x 1 m sehingga terbentuk grid sebanyak  1893 buah. Dengan menggunakan software Net Surveyor terkumpul data kekuatan sinyal yang diterima (RSS) dari jaringan wireless ke perangkat penerima (laptop) sebanyak 86.980 record. Hasil nilai rata-rata error jarak estimasi untuk localization seluruh ruangan di lantai 3 dengan menggunakan algoritma Naive Bayes pada fase offline tahap learning adalah 6,29 meter. Untuk fase online dan tahap post learning diperoleh rata-rata error jarak estimasi sebesar 7,82 meter.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
C. Chairani, W. Widyawan, and S. S. Kusumawardani, “Machine Learning Untuk Estimasi Posisi Objek Berbasis RSS Fingerprint Menggunakan IEEE 802.11g Pada Lantai 3 Gedung JTETI UGM”, INFOTEL, vol. 7, no. 1, pp. 1-8, May 2015.
Section
Articles

References

[1] Ahmed, U., Gavrilov, A., Lee, S., and Lee, Y. K., 2007, " A Rapid Development Approach For Signal Strength Based Location System", International Conference On Intellegent Pervasive Computing, 0-7695-3006-0/07 IEEE, DOI 10.1109/IPC.2007.62.
[2] Bensky, A., 2008, "Wireless Positioning: Technologies and Application, ser. GNSS technology and application series", Artech House Publishers.
[3] Chen, L. H., Jin, M. H., and Wu, E. H., 2010, "A Novel RSS-Based Indoor Positioning Algoritm Using Mobility Prediction", IEEE, International Conference on Parallel Processing Workshops.
[4] Derr, K., Manic, and M., 2008, "Wireless Indoor Location Estimation Based on Neural Network RSS Signature Recognition (LENSR), IEEE Conference on Industrial Electronics and Applications.

[5] Ethem, A., 2010, "Introduction To Machine learning", Second Edition, The MIT Press, Cambridge, Massachussetts, London, England.
[6] Fang, S. H., Lin, T. N., and Lee., K. C., 2008, "A novel algorithm for multipath Fingerprinting in indoor WLAN environment", IEEE Transactions On Wireless Communications, Vol. 7, No. 9, pp. 3579-3588.
[7] Garcia, M., Martinez, C., Tomas, J., and Lloret, J., 2007, "Wireless Sensors self-location in an Indoor WLAN environment", International Conference on Sensor Technologies and Applications, 0-7695-2988-7/07 IEEE, DOI 10.1109/SENSORCO MM.2007.63.
[8] Kaemarungsi, K., 2005, "Design Of Indoor Positioning Systems, Based On Location Fingerprinting Technique", Disertasi.
[9] Kaemarungsi, K., 2005, "Efficient Design of Indoor Positioning Systems Based on Location Fingerprint, IEEE.
[10] Liu, H., Darabi, H., Banerjee, P., and Liu, J., 2007, "Survey of Wireless Indoor Positioning Techniques and Systems", IEEE Transactions On Systems, Man, And Cybernetics—Part C: Applications And Reviews, Vol. 37, No. 6, November.
[11] Pan, S. J., Zeng, V. W., Yang, Q., and Hu, D. H., 2008, "Transfer Learning for WiFi-based Indoor Localization", Association for the Advancement of Artificial Intelligence.
[12] Tran, D. A., 2009, chapter in book "Machine Learning Based Localization" (eds: Guoqiang mao and Baris Fidan, IGI Global).
[13] Widyawan, 2009, "Learning Data Fusion for Indoor Localization", Department of Electronic Engineering Cork Institute of Technology, A thesis submitted for the degree of Doctor of Philosophy.
[14] Yeung, W. M. and Joseph, K. Ng. 2007, "Wireless Lan Positioning Based On Received Signal Strength From Mobile Device And Access Points", 13th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA 2007), 0-7695-2975-5/07.
[15] Zhou, J., Young, W. M., and Kee-Yin Ng, J., 2008, "Enhancing Indoor Positioning Accuracy By Utilizing Signals From Both The Mobile Phone Network And The Wireless Local Area Network", 22nd International Conference on Advanced Information Networking and Applications, IEEE.