Sistem Kendali PID untuk Pengendalian Kecepatan Motor Penggerak Unmanned Ground Vehicle untuk Aplikasi Industri Pertanian
Main Article Content
Abstract
Saat ini, penelitian terhadap penggunaan UGV dalam bidang industri pertanian dilakukan secara intensif. UGV dapat diaplikasikan dalam bidang industri pertanian dikarenakan operasinya yang fleksibel dan bentuknya yang sesuai dengan kondisi pada lahan pertanian. Salah satu faktor penting dalam pengoperasian UGV di lahan pertanian adalah pengendalian kecepatan geraknya. Kecepatan gerak UGV secara langsung ditentukan oleh kecepatan sudut dari motor dc yang digunakan sebagai tenaga penggerak pada roda-roda UGV. Artikel ini akan mendeskripsikan mengenai perancangan sistem kendali untuk mengendalikan kecepatan motor dc penggerak pada roda UGV. Pengendalian UGV ini dirancang menggunakan sistem kendali PID dimana berdasarkan metode trial dan eror dihasilkan nilai gain persamaan PID sebagai berikut KP = 0.03, KI = 0.0000001, dan KD = 0.005. Kecepatan UGV pada penelitian ini diuji dengan menggunakan dua input perintah kecepatan sudut dalam pemrogramannya. Berdasarkan pengujian sistem kendali menggunakan input 5500 RPM dan 4500 RPM diperoleh hasil bahwa UGV dapat bergerak pada jalur lurus dengan kecepatan yang konstan dengan nilai 0.528 m/s dan 0.431 m/s. Input perintah pada program berupa nilai RPM pada persamaan sistem kendali menghasilkan pengendalian motor dc yang tepat dibandingkan input program berupa nilai PWM secara langsung untuk menggoperasikan motor dc.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
References
[2] S. M. Pedersen, S. Fountas, and S. Blackmore, "Agricultural Robots –Applications and Economic Perspectives," Serivce Robot Appl., p. 400, 2008.
[3] A. A. Dijkhuizen, R. B. M. Huirne, S. B. Harsh, and R. W. Gardner, "Economics of robot application," Comput. Electron. Agric., vol. 17, no. 1, pp. 111–121, 1997.
[4] U. Weiss and P. Biber, "Plant detection and mapping for agricultural robots using a 3D LIDAR sensor," Rob. Auton. Syst., vol. 59, no. 5, pp. 265–273, 2011.
[5] G. Adamides et al., "HRI usability evaluation of interaction modes for a teleoperated agricultural robotic sprayer," Appl. Ergon., vol. 62, pp. 237–246, 2017.
[6] H. Y. Jeon and L. F. Tian, "Direct application end effector for a precise weed control robot," Biosyst. Eng., vol. 104, no. 4, pp. 458–464, 2009.
[7] W. Jang, G. Lewis, and J. Hoachuck, "Vibration-reducing Path Tracking Control for a Strawberry Transport Robot," 2014, vol. 7004.
[8] B. A. Vroegindeweij, G. L. van Willigenburg, P. W. G. Groot Koerkamp, and E. J. van Henten, "Path planning for the autonomous collection of eggs on floors," Biosyst. Eng., vol. 121, pp. 186–199, 2014.
[9] K. Joni, M. Ulum, and Z. Abidin, "Robot Line Follower Berbasis Kendali Proportional-Integral-Derivative ( PID ) Untuk Lintasan Dengan Sudut Ekstrim," J. Infotel, vol. 8, no. 2, pp. 138–142, 2016.
[10] P. J. Iswara and A. E. Putra, "Sistem Kontrol Keseimbangan Statis Robot Humanoid Joko Klana Berbasis Pengontrol PID," Indones. J. Electron. Instrum. Syst., vol. 2, no. 1, pp. 67–76, 2012.
[11] A. Dharmawan, Y. Y. Simanungkalit, and N. Y. Megawati, "Pemodelan Sistem Kendali PID pada Quadcopter dengan Metode Euler Lagrange," Indones. J. Electron. Instrum. Syst., vol. 4, no. 1, pp. 13–24, 2014.
[12] C. S. Gohiya, S. S. Sadistap, S. A. Akbar, and B. A. Botre, "Design and development of digital PID controller for DC motor drive system using embedded platform for mobile robot," in 2013 IEEE 3rd International Advance Computing Conference (IACC), 2012, pp. 52–55.
[13] A. Haytham, A. Wassal, Y. Z. Elhalwagy, and N. M. Darwish, "Modeling and simulation of four-wheel steering unmanned ground vehicles using a PID controller," in 2014 International Conference on Engineering and Technology (ICET), 2014.
[14] N. K. Barhate and K. S. Ingle, "Farm Monitoring Mobile Robot Speed Controlled of DC Motor Driver System Using PID Controller .," Int. J. Eng. Comput. Sci., vol. 4, no. 1, pp. 9950–9953, 2015.