Penggabungan Metode Inferensi Fuzzy dengan Operator Prewitt untuk Deteksi Tepi
Main Article Content
Abstract
Prewitt adalah salah satu operator klasik dalam deteksi tepi, sederhana dan mudah diimplementasikan namun sensitif terhadap noise. Beberapa penelitian telah dilakukan untuk memperbaiki kinerja operator-operator klasik, dan Fuzzy Logic menjadi salah satu pendekatan yang digunakan. Hal ini dikarenakan deteksi tepi melibatkan tingkat keabuan citra (gray level) yang menimbulkan persoalan ambiguitas nilai dan kekaburan, dua persoalan yang dapat diatasi oleh sebuah sistem Fuzzy dengan baik. Penelitian ini akan membahas tentang penggabungan sistem inferensi Fuzzy dengan operator Prewitt untuk deteksi tepi. Metode yang digunakan adalah mengubah nilai gradien x dan y yang dihasilkan oleh operator Prewitt menjadi himpunan Fuzzy, kemudian menggunakannya sebagai input untuk diolah ke dalam sistem inferensi Fuzzy. Perbandingan citra tepi yang dihasilkan antara menggunakan operator Prewitt murni dengan menggunakan Prewitt-Fuzzy akan ditampilkan dalam tulisan ini.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
References
[2] R. Kaur, M. Singh, B. Singh, "Comparative Analysis of Color Edge Detection Techniques Based on Fuzzy Logic", International Journal of Engineering Sciences, vol. 17, january 2016.
[3] B. S. Nikitha, A. N. Myna, "Fuzzy Logic Based Edge Detection in Color Images", International Advanced Research Journal in Science, Engineering and Technology, vol. 2, issue 7, July 2015, pp. 65-69.
[4] M. Nachtegael, D. Van der Weken, D. Van de Ville, E. E., Kerre, Fuzzy Filters for Image Processing, Springer, 2003 , pp. 178-194.
[5] E. K. Kaur, V. Mutenja, I. S. Gill, "Fuzzy Logic Based Image Edge Detection Algorithm in MATLAB", International Journal of Computer Application, vol. 1, number 22, 2010. Pp. 55-58.
[6] P. A. Khaire, Dr. N. S. V. Thakur, " A Fuzzy Set Approach for Edge Detection", International Journal of Image Processing (IJIP), vol. 6, issue 6, 2012.
[7] K. Bhardwaj, P. S. Mann, "Adaptive Neuro-Fuzzy Inference System (ANFIS) Based Edge Detection Technique", Internationa Journal for Science, and Emerging Technologies with Latest Trends, vol. 8, 2013. Pp. 7-13.
[8] C. I. Gonzalez, P. Melin, J. R. Castro, O. Mendoza, O. Castillo, "An Improved Sobel Edge Detection Method Based on Generalized Type-2 Fuzzy Logic", Journal Soft Computing: A Fusion of Foundations, Methodologies, and Applications, vol. 20, issue 2, February 2016, pp. 773-784.
[9] H. Kapoor, P. Singla, "Implementation of Magnified Edge Detection using Fuzzy-Canny Logic", International Journal of Computer Science & Communication Network, vol. 2(3), 2012, pp. 425-429.
[10] R. Jain, R. Kasturi, Brian G., Machine Vision. USA: McGraw-Hill, 1995. pp. 144.
[11] S. Kusumadewi, H. Purnomo, Aplikasi Logika Fuzzy untuk Pendukung Keputusan. Yogyakarta: Graha Ilmu, 2004.