Analisis Pengaturan Sistem Catu Daya Pada Satelit Nano
Main Article Content
Abstract
Keberhasilan suatu misi satelit nano sangat bergantung kepada keandalan Electrical Power System (EPS) untuk menjaga subsistem-subsistem pada satelit nano agar tetap berfungsi. Oleh karena itu dibutuhkan sebuah pengendalian distribusi daya yang efektif. Penelitian ini menjelaskan tentang bagaimana cara pendistribusian daya listrik yang efektif dan sesuai dengan kondisi satelit nano ketika terkena sinar matahari atau ketika kondisi gelap pada saat mengorbit diluar angkasa. Untuk menjelaskan hal tersebut dilakukan simulasi dan analisis pada perancangan modul power management EPS yang terdiri dari rangkaian boost converter LT3757 dan battery charger IC LT3652. Hasil simulasi menunjukan bahwa pada saat kondisi terang sistem akan mencatu daya beban menggunakan daya masukan panel surya yang sebelumnya telah melewati komponen boost converter (12 Volt), sekaligus mengisi daya batere hingga terisi penuh (7,4 Volt). Tetapi pada saat kondisi gelap sistem akan mencatu beban dengan daya yang dihasilkan oleh batere (7,4 Volt).
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
References
[2] P. Thirion, "Design and implementation of on-board electrical power supply of student nanosatellite oufti-1 of university of Liège," University of Liège, 2009.
[3] A. Yusuf and G. S. Prabowo, "Bench model design of the electrical power system for Iinusat-1 NanoSatellite," in Proceeding -COMNETSAT 2012: 2012 IEEE International Conference on Communication, Networks and Satellite, 2012, pp. 182–186.
[4] R. Burt, "Distributed Electrical Power System in Cubesat Applications," Utah State University, 2011.
[5] A. B. Wikanta, M. A. Murty, and I. Wijayanto, "Perancangan dan Realisasi Switch Electrical Power System Berbasis Mikrokontroller pada Nanosatellit," in e-Proceeding of Engineering, 2015, vol. 2, no. 2, pp. 2847–2854.
[6] M. Oredsson, "Electrical power system for the CubeSTAR nanosatellite," 2010.
[7] M. J. Rycroft, Spacecraft Systems Engineering, vol. 54, no. 3–4. 1992.
[8] Linear Technology, "LT3652: Power Tracking 2A Battery Charger for Solar Power," pp. 1–26.
[9] M. I. T. Opencourseware, "Chapter 5 Introduction to DC / DC Converters," 2007.
[10] L. T. Corporation, "LT3757/LT3757A -Boost, Flyback, SEPIC and Inverting Controller," pp. 1–36.