Deteksi Iris Berdasarkan Metode Black Hole dan Circle Curve Fitting
Main Article Content
Abstract
Sistem pengenalan identitas personal berdasarkan ciri biometrika adalah suatu sistem pengenalan seseorang berdasarkan pada ciri biometrika yang melekat pada orang tersebut. Iris mata merupakan salah satu ciri biometrik yang handal untuk sistem pengenalan identitas personal. Bagian sistem pengenalan identitas personal berdasarkan biometrik iris yang dianggap paling krusial adalah deteksi lokasi iris, karena akurasi deteksi iris berpengaruh pada tingkat akurasi sistem secara keseluruhan. Lokasi iris pada citra mata dibatasi oleh dua buah lingkaran yang memisahkan antara bagian iris dengan pupil dan sklera. Telah banyak metodemetode yang diusulkan oleh para peneliti untuk menghasilkan deteksi lokasi iris dengan akurat dan cepat. Masalah akurasi, kecepatan waktu eksekusi dan ketahanan terhadap noise merupakan bidang penelitian yang menantang pada deteksi iris. Makalah ini menyajikan metode deteksi iris menggunakan metode black hole dan circle curve fitting. Langkah pertama, mencari batas dalam lingkaran iris yang memisahkan antara daerah iris dan pupil. Dengan metode black hole yang bekerja berdasarkan fakta bahwa lokasi pupil merupakan daerah lingkaran yang paling hitam dan memiliki distribusi nilai intensitas yang seragam, maka lokasi pupil dapat ditentukan dengan teknik pengambangan. Batas lingkaran pupil dapat ditentukan dengan circle curve fitting dari parameter lingkaran daerah pupil. Langkah kedua, mencari batas luar lingkaran iris yang memisahkan antara iris dan sklera. Peta tepi citra iris dicari dengan menggunakan deteksi tepi Canny, kemudian diambil satu komponen tepi arah vertikal yang dapat mewakili batas lingkaran luar iris. Dari komponen tepi tersebut, dihitung jari-jari iris yang berpusat di pusat pupil. Dengan jari-jari iris dan pusat iris maka dapat ditentukan batas luar iris menggunakan circle curve fitting
Downloads
Article Details
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
References
[2] A. A. B. Shirazi and L. Nasseri, "A Novel Algorithm to Classify Iris Image Based on Differential of Fractal Dimension by Using Neural Network," 2008 Int. Conf. Adv. Comput. Theory Eng., pp. 181–185, Dec. 2008.
[3] J. G. Daugman, "High Confidence Visual Recognition of Persons by a Test of Statistical Independence," vol. 15, no. 11, 1993.
[4] J. Daugman, "How Iris Recognition Works," IEEE Trans. Circuits Syst. Video Technol., vol. 14, no. 1, pp. 21–30, Jan. 2004.
[5] R. P. Wildes, "Iris Recognition?: An Emerging Biometric Technology," vol. 85, no. 9, 1997.
[6] Z. Wang, X. Yan, S. Chen, and X. Niu, "An Improved Algorithm for Iris Location," vol. 1, no. 92, pp. 964–967, 2007.
[7] M. Shamsi, P. B. Saad, S. B. Ibrahim, and A. R. Kenari, "Fast Algorithm for Iris Localization Using Daugman Circular Integro Differential Operator," pp. 399–404, 2009.
[8] A. K. Nsaef, "Enhancement Segmentation Technique for Iris Recognition System Based on Daugman ’ s Integro-Differential Operator," no. Ivi, pp. 0–4.
[9] A. Radman, K. Jumari, and N. Zainal, "Fast and reliable iris segmentation algorithm," vol. 7, no. October 2012, pp. 42–49, 2013.
[10] T. qi Chuan, "A New Iris Region Segmentation Method," pp. 63–67, 2008.
[11] N. Van Huan and H. Kim, "A Novel Circle Detection Method for Iris Segmentation," pp. 620– 624, 2008.
[12] P. Li and X. Liu, "An Incremental Method for Accurate Iris Segmentation," pp. 0–3, 2008.
[13] N. K. Mahadeo and N. Bhattacharjee, "An Efficient and Accurate Iris Segmentation Technique," 2009.
[14] R. M. Sundaram and B. Chanda, "A fast method for iris localization," 2011.
[15] L. Masek, "Recognition of Human Iris Patterns for Biometric Identification," 2003.
[16] N. Barzegar and M. S. Moin, "A New Approach for Iris Localization in Iris Recognition Systems," 2008.
[17] Z. Zhijia, Z. Haifeng, and Y. Weiqi, "An Iris Location Method Based on the Active Contour," pp. 10–14, 2009. [18] S. Shah and A. Ross, "Iris Segmentation Using Geodesic Active Contours," vol. 4, no. 4, pp. 824– 836, 2009. [19] V. N. Boddeti and K. Ramkumar, "Improved Iris Segmentation based on Local Texture," pp. 2147– 2151, 2011. [20] J. Ko, J. Yoo, and K. Moon, "Iris Segmentation and Verification based Pattern Analysis," vol. 1, no. 1, pp. 725–729, 2007.
[21] J. Zuo, N. K. Ratha, J. H. Connell, and S. Drive, "A New Approach for Iris Segmentation," 2008.
[22] Z. He, S. Member, and T. Tan, "Toward Accurate and Fast Iris Segmentation for Iris Biometrics," vol. 31, no. 9, pp. 1670–1684, 2009.
[23] L. R. Kennell, R. W. Ives, and R. M. Gaunt, "BINARY MORPHOLOGY AND LOCAL STATISTICS APPLIED TO IRIS SEGMENTATION FOR RECOGNITION," pp. 293–296, 2006.
[24] N. Technologies, H. Patel, C. K. Modi, and M. C. Paunwala, "Human Identification by Partial Iris Segmentation using Pupil Circle Growing based on Binary Integrated Edge Intensity Curve," 2011.