Prediksi Produktivitas Tanaman Padi di Kabupaten Karawang Menggunakan Bayesian Networks
Main Article Content
Abstract
Penelitian ini ditujukan untuk membangun sebuah model prediksi tingkat produktivitas padi di kabupaten Karawang. Prediksi menggunakan Bayesian Networks dilakukan dengan tiga tahap, yaitu tahap pra-pemrosesan data, tahap implementasi dan tahap evaluasi. Tahap pra-pemrosesan dilakukan dengan transformasi data numerik menjadi data nominal dengan menggunakan dua skenario,yaitu threshold mean dan teknik diskretisasi. Tahap implementasi adalah menerapkan algoritma Bayesian Networks, yaitu melalui proses pembelajaran struktur dan pembelajaran parameter. Proses pembelajaran struktur dan parameter pada bayesian networks menggunakan software CaMML 1.41. Evaluasi performa Bayesian Networks dalam memprediksi produktivitas padi dengan confusion matrix, yaitu menghitung akurasi prediksi dan log loss. Hasil eksperimen menunjukkan hasil yang memuaskan, akurasi di atas 90%. Model terbaik dihasilkan dari tahap pra-pemrosesan menggunakan diskretisasi dan training data selama 5 tahun dan testing data selama 1 tahun. Hal ini menunjukkan pemilihan teknik pra-pemrosesan dan teknik pembagian training data dan testing data mempengaruhi hasil evaluasi performa struktur Bayesian Networks.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
References
[2] M. Sandri, P. Berchialla, I. Baldi, D. Gregori, R. Alberto, and D. Blasi, "Dynamic Bayesian Networks to predict sequences of organ failures in patients admitted to ICU", J. Biomed. Inform.,2014, vol.48, pp. 106–113.
[3] P. Larrañaga, H. Karshenas, C. Bielza, and R. Santana, "A review on evolutionary algorithms in Bayesian network learning and inference tasks," Information Sciences, 2013, vol. 233, pp. 109–125.
[4] P. A. Aguilera, A. Fernández, R. Fernández, R. Rumí, and A. Salmerón, "Environmental Modelling & Software Bayesian networks in environmental modelling," Environmental Modelling Software, 2011, vol. 26, no. 12, pp. 1376–1388.
[5] C. A. P. and C. Henderson, "Bayesian networks?: A guide for their application in natural resource management and policy", Technical Report Landscape Logic, 2010.
[6] A. Passuello, O. Cadiach, V. Kumar, and M. Schuhmacher, "Application of Bayesian Networks for agricultural land suitability classification?: a case study of biosolids amendment," International Congress on Environmental Modelling and Software, 2012.
[7] B. Irawan, "Dinamika Produktivitas dan Kualitas Budi Daya Padi Sawah", 2016, pp. 179–199.
[8] B. N. Sari, "Identifikasi Keterkaitan Variabel dan Prediksi Indeks Pembangunan Manusia (IPM) Provinsi Jawa Barat Menggunakan Dynamic Bayesian Networks," Jurnal Infotel, 2016, Vol.8 No.2, pp. 150-155.
[9] H. Junaedi, H. Budianto, and I. Maryati, "Data transformation pada data mining", Prosiding Konferensi Nasional Inovasi dalam Desain dan Teknologi-IDeaTech, 2011, pp. 93–99.
[10] J. T. Mccloskey, R. J. Lilieholm, and C. Cronan, "Landscape and Urban Planning Using Bayesian belief networks to identify potential compatibilities and conflicts between development and landscape conservation," Landsc. Urban Plan., vol. 101, no. 2, pp. 190–203, 2011.
[11] K. B. Korb and A. E. Nicholson, Bayesian Artificial Intelligence, Second edi. CRC Press, 2011.
[12] E. Millán, T. Loboda, and J. L. Pérez-de-la-cruz, "Computers & Education Bayesian networks for student model engineering," Computers & Education, vol. 55 , 2010, pp. 1663–1683