Trajectory Tracking Control System Design For Autonomous Two-Wheeled Robot
Main Article Content
Abstract
A trajectory tracking control system design of an autonomous two-wheeled robot (TWR) is presented. A TWR has two movements: translation (moving forward/backward) and rotation (turning to the right/left) which are commonly represented by a non-linear kinematic equations. The objective of the trajectory tracking control system is to steer the TWR move on a desired trajectory in planar space. In order to simplify the trajectory tracking control system design, the non-linear kinematic equations were approximated by linear kinematic equations through a linearization. Linear quadratics regulator (LQR) method was applied to design the control system. Computer simulations were done to evaluation performance of the designed control system. The simulation results show that the designed control system was able to make the TWR track a desired trajectory that located 1.4 meter away from the TWR initial position within 3 seconds.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
References
[2] Y. Kanayama, Y. Kimura, F. Miyazaki, and T. Noguchi, “A stable tracking control method for an autonomous mobile robot,” Proceedings of IEEE International Conference on Robotics and Automation, 1990, pp. 384–389.
[3] Z.P. Jiang and H. Nijmeijer, “Tracking control of mobile robots: A case study in backstepping,” Automatica, vol. 33, no. 7, pp. 1393–1399, 1997.
[4] R. Dhaouadi and A. A. Hatab, “Dynamic modelling of differential-drive mobile robots using lagrange and newton-euler methodologies: A unified framework,” Advances in Robotics & Automation, vol. 2, no. 2, pp. 1–7, 2013.
[5] Z.P. Jiang, “Global tracking control of underactuated ships by lyapunov’s direct method,” Automatica, vol. 38, no. 2, pp. 301–309, 2002.
[6] F. Mazenc, K. Pettersen, and H. Nijmeijer, “Global uniform asymptotic stabilization of an underactuated surface vessel,” IEEE Transactions on Automatic Control, vol. 47, no. 10, pp. 1759–1762, 2002.
[7] J. Xu, M. Wang, and L. Qiao, “Dynamical sliding mode control for the trajectory tracking of underactuated unmanned underwater vehicles,” Ocean engineering, vol. 105, pp. 54–63, 2015.
[8] B.K. Sahu and B. Subudhi, “Adaptive tracking control of an autonomous underwater vehicle,” International Journal of Automation and Computing, vol. 11, no. 3, pp. 299–307, 2014.
[9] Y.S. Ha et al., “Trajectory tracking control for navigation of the inverse pendulum type self-contained mobile robot,” Robotics and autonomous systems, vol. 17, no. 1-2, pp. 65–80, 1996.
[10] K. Pathak, J. Franch, and S.K. Agrawal, “Velocity and position control of a wheeled inverted pendulum by partial feedback linearization,” IEEE Transactions on robotics, vol. 21, no. 3, pp. 505–513, 2005.
[11] R. Cui, J. Guo, and Z. Mao, “Adaptive backstepping control of wheeled inverted pendulums models,” Nonlinear Dynamics, vol. 79, no. 1, pp. 501–511, 2015.
[12] M. Yue, S. Wang, and J.Z. Sun, “Simultaneous balancing and trajectory tracking control for two-wheeled inverted pendulum vehicles: a composite control approach,” Neurocomputing, vol. 191, pp. 44–54, 2016.
[13] Z.Q. Guo, J.X. Xu, and T.H. Lee, “Design and implementation of a new sliding mode controller on an underactuated wheeled inverted pendulum,” Journal of the Franklin Institute, vol. 351, no. 4, pp. 2261–2282, 2014.
[14] N. Esmaeili, A. Alfi, and H. Khosravi, “Balancing and trajectory tracking of two-wheeled mobile robot using backstepping sliding mode control: Design and experiments,” Journal of Intelligent & Robotic Systems, vol. 87, no. 3, pp. 601–613, Sep 2017.
[15] C. Yang, Z. Li, R. Cui, and B. Xu, “Neural network-based motion control of an underactuated wheeled inverted pendulum model,” IEEE Transactions on Neural Networks and Learning Systems, vol. 25, no. 11, pp. 2004–2016, 2014.
[16] M. Yue, C. An, and J.Z. Sun, “An efficient model predictive control for trajectory tracking of wheeled inverted pendulum vehicles with various physical constraints,” International Journal of Control, Automation and Systems, vol. 16, no. 1, pp. 265–274, 2018.
[17] T. Nomura, Y. Kitsuka, H. Suemitsu, and T. Matsuo, “Adaptive backstepping control for a two-wheeled autonomous robot,” in ICCAS-SICE, 2009, pp. 4687–4692.
[18] R.P.M. Chan, K.A. Stol, and C.R. Halkyard, “Review of modelling and control of two-wheeled robots,” Annual Reviews in Control, vol. 37, no. 1, pp. 89–103, 2013.
[19] N. Uddin, “Lyapunov-based control system design of two-wheeled robot,” Proceeding of International Conference on Computer, Control, Informatics and its Applications (IC3INA), 2017, pp. 121–125.
[20] D.S. Naidu, Optimal control systems. CRC press, 2002.
[21] N. Uddin, T.A. Nugroho, W.A. Pramudito, “Stabi-lizing two-wheeled robot using linear quadratic regulator and states estimation,” in Proc. of the 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE), Yogyakarta, Indonesia, Oct. 2017.