Energy Consumption Analysis of DBR and VBF Protocols in Underwater Sensor Networks Using Aqua-Sim at Network Simulator 2

Main Article Content

Ahmad Tsaqib Hakim
Arrum Prima Dewi
Doan Perdana
Cyril Nugrahutama Kurnaman

Abstract

For decades, there have been significant interests in monitoring the aquatic environment for scientific exploration, commercial exploitation, coastline protection, and even disasters prevention and mitigation such as tsunami warnings. Highly precise, real-time, and temporal-spatial continuous aquatic environment monitoring system is extremely important for underwater life. To support and simulate such monitoring system, underwater sensor networks (UWSN) have emerged as a very powerful technique for many applications on underwater environment, including monitoring, measurement, surveillance, and control by using Aqua-Sim. Aqua-Sim is a simulator for UWSN developed on Network Simulator 2 platform which effectively simulates the attenuation of underwater acoustic channels and the collision behaviors in long delay acoustic networks. Currently, there are several routing protocols for UWSN which are implemented in Aqua-Sim. On this research, we did a simulation on Aqua-Sim by performing Vector-based Forwarding (VBF) protocol and Depth-based Routing (DBR) protocol performance analysis based on energy consumption parameter. Based on the result, it can be concluded that the VBF routing protocol requires more energy consumption than the DBR routing protocol.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
A. T. Hakim, A. P. Dewi, D. Perdana, and C. N. Kurnaman, “Energy Consumption Analysis of DBR and VBF Protocols in Underwater Sensor Networks Using Aqua-Sim at Network Simulator 2”, INFOTEL, vol. 10, no. 4, pp. 170-177, Nov. 2018.
Section
Articles

References

[1] M. C. Durai, S. M. Kumar, and Sharmila, “Underwater Wireless Sensor Networks,” Compusoft, vol. IV, no. VII, pp. 1899–1902, 2015.
[2] S. Sendra, J. Lloret, J. Miguel Jimenez, and L. Parra, “Underwater Acoustic Modems,” IEEE Sens. J., vol. 16, no. 11, pp. 4063–4071, 2016.
[3] P. Xie et al., “Aqua-Sim: An NS-2 based simulator for underwater sensor networks,” in OCEANS 2009, MTS/IEEE Biloxi - Marine Technology for Our Future: Global and Local Challenges, 2009, pp. 1–7.
[4] C. Giantsis and A. A. Economides, “Comparison of Routing Protocols for Underwater Sensor Networks : A Survey,” Int. J. Commun. Networks Distrib. Syst., vol. 7, no. 3, pp. 192–228, 2011.
[5] Y. Pan, R. Diamant, and J. Liu, “Underwater Acoustic Sensor Networks,” Int. J. Distrib. Sens. Networks, vol. 12, no. 8, 2016.
[6] D. Khandelwal, R. Mahajan, and D. Bagai, “Underwater Wireless Sensor Network : A Review,” Int. J. Adv. Res. Electron. Commun. Eng., vol. 7, no. 5, pp. 424–428, 2018.
[7] J. Wang, W. Shi, L. Xu, L. Zhou, and Q. Niu, Design of Optical-Acoustic Hybrid Underwater Wireless Sensor Network. Elsevier, 2017.
[8] C. Raj and R. Sukumaran, “Modeling UWSN Simulators – A Taxonomy,” Int. J. Comput. Inf. Eng., vol. 9, no. 2, pp. 585–592, 2015.
[9] T. Kaur, “Underwater Wireless Sensor Networks Challenges : A Review,” Am. J. Comput. Eng., vol. 1, no. 2, pp. 1–5, 2018.
[10] A. P. Das and S. M. Thampi, “Simulation Tools for Underwater Sensor Networks: A Survey,” Netw. Protoc. Algorithms, vol. 8, no. 4, pp. 41–55, 2016.
[11] C. Namesh and B. Ramakrishnan, “Analysis of VBF protocol in underwater sensor network for static and moving nodes,” Int. J. Comput. Networks Appl., vol. 2, no. 1, pp. 20–26, 2015.
[12] R. Mohammadi, R. Javidan, and A. Jalili, “Fuzzy Depth Based Routing Protocol for Underwater Acoustic Wireless Sensor Networks,” J. Telecommun. Electron. Comput. Eng., vol. 7, no. 1, pp. 81–86, 2015.
[13] T. Ali, L. T. Jung, and I. Faye, “Diagonal and Vertical Routing Protocol for Underwater Wireless Sensor Network,” in International Conference on Innovation, Management, and Technology Research, 2013, vol. 129, pp. 372–379.
[14] D. M. Ibrahim, T. E. Eltobely, M. M. Fahmy, and E. A. Sallam, “Enhancing the Vector-Based Forwarding Routing Protocol for Underwater Wireless Sensor Networks : A Clustering Approach,” in International Conference on Wireless and Mobile Communications, 2014, no. 10, pp. 98–104.
[15] R. W. L. Coutinho, L. F. M. Vieira, and A. A. F. Loureiro, “DCR: Depth-Controlled Routing protocol for underwater sensor networks,” in International Symposium on Computers and Communications, 2013, pp. 453–458.
[16] R. Kumar and M. K. Mishra, “Improved the Network Lifetime through Energy Balancing in Depth Based Routing Protocol for Underwater Sensor Network,” in Third International Conference on Internet of Things and Connected Technologies (ICIoTCT), 2018, pp. 488–494.
[17] M. I. Denatama, D. Perdana, and R. M. Negara, “Analisis Perbandingan Kinerja Protokol Routing DSDV dan OLSR Untuk Perubahan Kecepatan Mobilitas pada,” J. Infotel, vol. 8, no. 2, pp. 100–106, 2016.