Development Grouping of Synonym Set Thesaurus Vocabulary The Qur’an in English Using Hierarchical Clustering Algorithm

Main Article Content

Salma Fauziah
Moch Arif Bijaksana

Abstract

Research in the field of text mining to process entries or words from the Qur'an is very beneficial for Muslims. This study aims to establish a set of synonyms for the thesaurus in the words of the Qur'an. This research is used because the source of knowledge about the science of the Qur'an is still lacking. The dataset in this study uses the Corpus Qur'an and English Translation. This research is a research development of an article that has been published, namely "The Development of Al-Qur'an Vocabulary Set Synonyms with WordNet Approach" by Laras Gupitasari. Input from this research system uses nouns from the translation of English words in the Quran. The output of the system produces several groups that have the same level of closeness of meaning displayed, the first group means the word in the group has a close meaning. To produce output, this study uses word grouping with a hierarchical grouping method and calculates distances using common paths, then groups results according to the closeness of meaning from word entries. The evaluation in this study produced an F-Measure value of 76%, F-Measure Value is an evaluation to measure the accuracy of predictions issued by the system.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
S. Fauziah and M. A. Bijaksana, “Development Grouping of Synonym Set Thesaurus Vocabulary The Qur’an in English Using Hierarchical Clustering Algorithm”, INFOTEL, vol. 12, no. 3, pp. 105-114, Aug. 2020.
Section
Informatics

References

[1] Syaikh Manna Al-Qaththan. (2015). Pengantar Studi Ilmu Al-Qur’an (M. I. Abdul Zulfidar Akaha (ed.); 13th ed.). Pustaka Al-Kautsar.
[2] Ali, A. Y. (1997). Qur’an by A Yusuf ALi. The Holy Quran. theholyquran.org
[3] I Ketut Eddy Purnama, Mochamad Hiariadi, G. (2015). Supervised Learning Indonesian Gloss Acquisition. IAENG International Journal of Computer Science, 42.
[4] Thesaurus, I. (2020). PersamaanKata. Persamaan Kata. persamaankata.com
[5] Arini Rohmawati, Moch. Arif Bijaksana, K. M. L. (2019). Analysis of The Commutative Method Approach on English Thesaurus For Developing Synonym Sets. Indonesian Journal of Computing, 4(2), 137–146. https://pdfs.semanticscholar.org/1304/a0c724018dd1d0ecba6411aaa1bfbe8608b5.pdf
[6] WordNet. (2019). A Lexical Database for English. WordNet. wordnet.princeton.edu
[7] Miller, G. A. (1995). Wordnet: A Lexical Database For English. In Communications of the ACM, 38(11), 39–41. https://doi.org/https://doi.org/10.1145/219717.219748
[8] D. P. Dendy Sugono, A. B. (2008). Tesaurus Bahasa Indonesia Pusat Bahasa. Departemen Pendidikan Nasional. https://bsd.pendidikan.id/data/umum/Tesaurus_Bahasa_Indonesia_Pusat_Bahasa_Kemendiknas_2008.pdf
[9] Tambunan, K. (2012). Tesaurus bioteknologi : Sebagai alat bantu pengideksan dokumen. Jurnal Dokumentasi Dan Informasi, 33(2). https://doi.org/http://dx.doi.org/10.14203/j.baca.v33i2.99
[10] M. A. Zahra Nazari, D. K. (2015). A new hierarchical clustering algorithm. ICIIBMS 2015, 834. https://doi.org/10.1109/ICIIBMS.2015.7439517
[11] Kigarriff, A. (1998). Gold Standard Datasets for Evaluating Word Sense Disambiguation Programs. Information Technology Research Institute Technical Report Series, 12(4), 453–472. https://doi.org/https://doi.org/10.1006/csla.1998.0108
[12] Laras Gupitasari, Moch Arif Bijaksana, A. F. H. (2020). Pembangunan Sinonim Set Kosakata Al-Qur’an Dengan Pendekatan WordNet. Jurnal Teknik Informatika Dan Sistem Informasi, 6, 163–170.
[13] Charu C. Aggarwal, C. Z. (2012). Mining Text Data. Springer. https://doi.org/https://doi.org/10.1007/978-1-4614-3223-4
[14] Bijaksana, M. A. (2019). Slide PPT : Text Mining Telkom University. In Telkom University. Fakultas Informatika.
[15] Suyanto. (2018). Machine Learning Tingkat Dasar & lanjut (Suyanto (ed.)). Informatika Bandung.