Convolutional Neural Networks Based on Raspberry Pi for a Prototype of Vocal Cord Abnormalities Identification
Main Article Content
Abstract
This study aims to make a device prototype for identifying vocal cord abnormalities based on Raspberry Pi. This prototype could classify the abnormalities into seven classes, i.e., cysts, granulomas, nodules, normal, papilloma, paralysis, and no vocal cords. The applied method to classify is a deep learning algorithm, mainly using Convolutional Neural Network (CNN). In building the CNN model, we used a statistical method to form a model training scenario, also modified the AlexNet architecture model by optimizing the parameters. The optimized parameters in the test scenario obtained 95.35% accuracy. The CNN model implemented on the Raspberry Pi, and the test results obtained 79.75% accuracy.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
References
[2] Anies, Seri kesehatan umum pencegahan dini gangguan kesehatan: berbagai penyakit dan gangguan kesehatan yang perlu diwaspadai dan dicegah secara dini. Jakarta: Pt Elex Media Komputindo, 2005.
[3] D. E. Newman-Toker Et Al., “Serious misdiagnosis-related harms in malpractice claims: the ‘big three’–vascular events, infections, and cancers,” Diagnosis, vol. 6, pp. 227–240, 2019.
[4] Docdoc, “What is stroboscopy: overview, benefits, and expected results,” 2020. Https:==Www:Docdoc:Com=Medicalinformation=Procedures=Stroboscopy.
[5] A. Kadir and A. Susanto, Teori dan aplikasi pengolahan citra digital. Yogyakarta: Andi, 2013.
[6] Young, I. T., Gerbrands, J. J., Vliet, and L. J. Van., Fundamentals Of Image Processing. 2007.
[7] B. G. L. Pubiyangga, “Identifikasi kondisi pita suara untuk deteksi kelainan pita suara dengan metode moore neighbor tracing,” Univ. Telkom, P. 2016.
[8] H. Bethaningtyas, S. Suwandi, and C. D. Anggraini, “Sistem klasifikasi kondisi pita suara dengan metode decision tree,” J. Nas. Tek. Elektro Dan Teknol. Inf., vol. 8, no. 2, pp. 168, 2019, Doi: 10.22146/Jnteti.V8i2.506.
[9] H. Bethanigtyas, Suwandi, and C. D. Anggraini, “Classification System Vocal Cords Disease Using Digital Image Processing,” Proc. - 2019 Ieee Int. Conf. Ind. 4.0, Artif. Intell. Commun. Technol. Iaict 2019, no. C, pp. 129–132, 2019, Doi: 10.1109/Iciaict.2019.8784832.
[10] C. D. Anggraini, “Identifikasi otomatis kelainan pada pita suara menggunakan teknologi pengolahan citra digital.,” Telkom University, 2019.
[11] B. Luan, Y. Sun, C. Tong, Y. Liu, and H. Liu, “R-FCN based laryngeal lesion detection,” Proc. - 2019 12th Int. Symp. Comput. Intell. Des. Isc. 2019, pp. 128–131, 2019, Doi: 10.1109/Iscid.2019.10112.
[12] C. Matava, E. Pankiv, S. Raisbeck, M. Caldeira, and F. Alam, “A convolutional neural network for real time classification, identification, and labelling of vocal cord and ttacheal using laryngoscopy and bronchoscopy video,” J. Med. Syst., vol. 44, no. 2, 2020, Doi: 10.1007/S10916-019-1481-4.
[13] S. Albawi, T. A. M. Mohammed, and S. Alzawi, “A data-driven approach to precipitation parameterizations using convolutional encoder-decoder neural networks pablo,” IEEE, 2017, [Online]. Available: https://wiki.tum.de/display/lfdv/Layers+of+a+Convolutional+Neural+Network.
[14] Z. C. Horn, L. Auret, J. T. McCoy, C. Aldrich, and B. M. Herbst, “Performance of convolutional neural networks for feature extraction in froth flotation sensing,” IFAC-PapersOnLine, vol. 50, no. 2, pp. 13–18, 2017, doi: 10.1016/j.ifacol.2017.12.003.
[15] B. Santosa and A. Umam, Data mining dan big data analysis, 2nd ed. Penerbit Penebar Media Pustaka: Yogyakarta., 2018.
[16] Chennupati and Sumanth., “Hierarchical decomposition of large deep networks.,” Rochester Institute of Technology, 2016.