A User Recommendation Model for Answering Questions on Brainly Platform
Main Article Content
Abstract
Brainly is a Community Question Answer (CQA) application that allows students or parents to ask questions related to their homework. The current mechanism is that users ask questions, then other users who are in the same subject interest can see and answer it. As a reward for answering questions, Brainly gives points. The number of points varies by question. The greater of total points users have, Brainly will automatically display them in the smartest user leaderboard on the site's front page. But sometimes, some users do not have good activity in answering questions. Thus, it is possible to have an urgent question that has not been answered by anyone. This study implements Fuzzy C-Means cluster method to improve Brainly's feature regarding the speed and accuracy of answers. The idea is to create student clusters by utilizing the smartest students' leaderboard, subjects interest, and answering activities. The stages applied in this research started with Data Extraction, Preprocessing, Cluster Process, and User Recommender. The optimal number of clusters in the answerer recommendation in the Brainly platform is 2 clusters. The value of the fuzzy partition coefficient for two clusters reached 0.97 for Mathematics and 0.93 for Indonesian. Meanwhile, the results of the recommendations were influenced by answer ratings. Many numbers of the answer are not given rating because the possibility of the answers are not appropriate or user's insensitivity in giving ratings.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work