Decision tree method to classify the electroencephalography-based emotion data
Main Article Content
Abstract
Electroencephalography (EEG) data contains recordings of brain signal activity divided into several channels with different impulse responses that can be used to detect human emotions. In classifying emotions, EEG data needs to be parsed or signal processed into values that can help recognize emotions. Research related to electroencephalography has been carried out previously and has experienced success using the Fuzzy C-Means, Multiple Discriminant Analysis, and Deep Neural Network methods. This study was conducted to classify human emotions from electroencephalography data on 10 participants. Each participant carried out 40 trials of testing using the Power Spectral Density (PSD) and Discrete Wavelet Transform (DWT) methods at the initial stage of classification and the Decision Tree method as the final method that can improve the accuracy of the two methods at the initial stage of classification. The results of this study were the finding of 2 participants (3 trials) who were unmatched from a total of 10 participants (400 trials), which were analyzed using the decision tree method. The decision tree method can correct this error and increase the classification result to 100%. The DWT method is used as a reference in the classification of emotions, considering that the DWT method has an output of arousal and valance values . In contrast, the PSD method only has a combined output.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work