Vegetation classification algorithm using convolutional neural network ResNet50 for vegetation mapping in Bandung district area
Main Article Content
Abstract
Bandung District is one of crop provider for West Java Province. About 31.158,22 ha is used for crop. However, some of them are not maintained well due to lack of vegetation map information. Local authority has tried to map the vegetation in their area by using free license satellite images, and aerial images from Unmanned Aerial Vehicle (UAV). Despite both images being able to provide large plantation area images, both are unable to classify the vegetation type in those images. Telkom University with Bandung Agriculture Regional Office (Dinas Pertanian Kabupaten Bandung) has conducted joint research to develop algorithm based on 50-layer residual neural network (ResNet50) to classify the vegetation type. The input is of this algorithm is primarily aerial images are captured from different type, height, and position of crops. Seven different ResNet50 configurations have been set and simulated to classify the crop images. The result is the configuration with resized images, employing triangular policy of cyclic learning rate with rate 1.10−7 – 1.10−4 comes out as the best setup with more than 95% accuracy and relatively low loss.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work