Classification of ECG signal-based cardiac abnormalities using fluctuation-based dispersion entropy and first-order statistics
Main Article Content
Abstract
The heart is one of the most important organs in the human body. The presence of abnormalities in the heart can be fatal for a person. One way to detect heart abnormalities is an Electrocardiogram (EKG) signal examination. To facilitate the detection of ECG signal abnormalities, an automatic classification method is needed. Therefore, in this study, a method for classifying ECG signals using FdispEn (Fluctuation-based dispersion Entropy) and first-order statistics is proposed. FdispEn measures the uncertainty in the signal and is expected to be able to distinguish the physiological state of the ECG signal time series. In this study FdispEn and statistical computing were used as feature extraction of the ECG signal and combined with the Support Vector Machine (SVM) for the classification process of Normal ECG, AFIB (Atrial Fibrilation), and CHF (Congestive Heart Failure). The method proposed in this study generates an accuracy of 91.5%. The system proposed in this study is expected to assist in the clinical diagnosis of abnormalities in the heart.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work