Detection of learning styles with prior knowledge data using the SVM, K-NN and Naïve Bayes algorithms
Main Article Content
Abstract
The two types of automatic learning style detection approaches are data driven (DD) and literature based (LB). Both methods of automatic learning style detection have advantages over traditional learning style detection methods because they use external data sources, such as forums, quizzes and views of teaching materials, that are more accurate than the questionnaires used in traditional styles of detection. The results of automatic detection, on the other hand, do not always reflect learning styles. This paper presents a learning style recognition method that uses data from the learner’s internal source, namely prior knowledge, to overcome these challenges. Prior knowledge is proposed because it is based on the learner’s knowledge or skills, which better reflect the learner’s characteristics, rather than on the learner’s behaviour, which tends to be dynamic. By using past knowledge, this paper presents a method for detecting automatic learning patterns. The learning style detection framework is unique in that it consists of three stages: prior knowledge question development, prior knowledge measurement and learning style detection using the Support Vector Machine (SVM), Naïve Bayes and K-Nearest Neighbour (K-NN) classification methods. The accuracy of learning style detection using prior knowledge data was higher than detection results using behavioural data or hybrid data (prior knowledge + behaviour) in this study
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work