Implementation of line detection self-driving car using HSV method based on raspberry pi 4
Main Article Content
Abstract
With the development of technology, especially in the field of robotics, daily human activities can be carried out with artificial intelligence. One of the artificial intelligence technologies that help ease the burden on humans, especially in terms of driving, is self-driving cars. In this case, self-driving cars have several methods with GPS systems, radar, lidar, or cameras. In this study, a self-driving car system was designed on a navigation path model using a street mark detector with an intermediary sensor, namely a camera as a vision sensor. This self-driving car system uses a prototype called an autonomous car to walk on a path which is a self-driving car navigation direction based on the detected line to be able to detect camera sensors that process line images from the camera using HSV. method. In this study, a self-driving car system has been successfully designed using a microcontroller, namely Raspberry Pi 4 as a programmer and L298n motor driver, BTS7960 as a driver for a self-driving car. The Raspberry Pi 4 sends real-time images through the camera as a vision sensor which then detects a line to navigate the movement of this self-driving car. By using image processing, the resulting level of precision can reach the average value according to the direction of the self-driving car.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work