Performance comparison of cache replacement algorithms onvarious internet traffic
Main Article Content
Abstract
Internet users tend to skip and look for alternative websites if they have slow response times. For cloud network managers, implementing a caching strategy on the edge network can help lighten the workload of databases and application servers. The caching strategy is carried out by storing frequently accessed data objects in cache memory. Through this strategy, the speed of access to the same data becomes faster. Cache replacement is the main mechanism of the caching strategy. There are seven cache replacement algorithms with good performance that can be used, namely LRU, LFU, LFUDA, GDS, GDSF, SIZE, and FIFO. The algorithm is developed uniquely according to the internet traffic patterns encountered. Therefore, a particular cache replacement algorithm cannot be superior to other algorithms. This paper presents a performance comparison simulation of the seven cache replacement algorithms on various internet traffic extracted from the public IRcache dataset. The results of this study indicate that the hit ratio performance is strongly influenced by cache size, cacheable and unique requests. The smaller the unique request that occurs, the greater the hit ratio performance obtained. The LRU algorithm shows an excellent hit ratio performance to perform cache replacement work under normal internet conditions. However, when the access impulse phenomenon occurs, the GDSF algorithm is superior in obtaining hit ratios with limited cache memory capacity. The simulation results show that GDSF reaches a 50.75% hit ratio while LRU is only 49.17% when access anomalies occur.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work