Indonesian news classification application with named entity recognition approach
Main Article Content
Abstract
Nowadays, many netizens search for news via search engines with countless amounts of information, so it is increasingly difficult to determine when the number of news articles that appear changes very quickly and dynamically. Thus, it is necessary to process the extraction of news information to display the core information of the news. Problems arise, especially in Indonesian, which has a structure of various noun phrase entities with shallow parsing or grammatical induction. Named Entity Recognition (NER) has the opportunity to overcome this because it can extract news entities in depth, starting from proper nouns in text documents containing information search, machine translation, answering questions, and automatic summarization. This study aims to apply NER in Indonesian language news classification. This study uses Design-Based Research whose process includes (1) pre-implementation, (2) design, (3) implementation and revision, and finally, (4) reflection and evaluation. This application was developed on the platform python, streamlit, BeautifulSoup, gnews, and spacy library. The results of application accuracy testing have an F1-score value of 89.69% for all entities consisting of place, figure, day, date, and organization.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work